1.1 简介 1 1.1.1 材料力学和弹性理论 1 1.1.2 历史发展 2 1.2 本书范围 3 1.3 分析和设计 4 1.3.1 分析在设计中的作用 6 1.3.2 安全系数的选择 6 1.3.3 案例研究 7 1.4 平衡条件 8 1.5 应力的定义和分量 9 1.5.1 符号约定 11 1.5.2 剪应力相等 12 1.5.3 应力的一些特殊情况 12 1.6 内部力合力和应力关系 13 1.6.1 应力的基本公式 15 1.6.2 组合应力 17 1.7 倾斜截面上的应力 17 1.7.1 轴向荷载构件 18 1.8 物体内部的应力变化 20 1.8.1 平衡方程 20 1.9 平面应力变换 23 1.9.1 应力张量 25 1.9.2 平面应力状态的极坐标表示 25 1.9.3 平面应力状态的笛卡尔表示 25
我们研究了嵌入在N细胞星形的Quarbits网络中的单细胞量子电池的稳态充电过程,每个电池都与Fermion储存库相互作用,分别在平衡和非平衡场景中进行了集体和单独的相互作用。我们在两种情况下都发现了最佳的稳态充电,它可以随储层的化学潜力和化学势不同而单调地生长。储层的高基本温度在所有参数方面都具有破坏性作用。我们指出,无论非平衡条件的强度如何,电池相应储层的高基础化学势都可以显着增强充电过程。另一方面,弱耦合强度可以强烈抑制充电。因此,我们的结果可以抵消自我排放的有害E FF,并为在没有外部充电场的情况下增强开放量子电池的稳定充电提供了宝贵的指南。
引言。—量子热力学[1-9]是一个具有研究的研究领域,其中在包括热发动机和冰箱在内的各种中和纳米驱动器中都寻求真正的量子效应[10,11]。在热力学过程中寻求量子效应远非琐碎的任务。正如恩里科·费米(Enrico Fermi)在1936年夏季会议上在哥伦比亚大学(纽约)举行的讲座中清楚地解释的[12],“在纯热力学中,基本定律被认为是基于实验证据的假设,并且结论是从他们的情况下得出的,而没有进入景象机制。”热力学具有一个全等特征,提供对经典和量子设置有效的预测。为了在热力学的背景下找到真正的量子优势(GQA),显然需要超越平衡条件并研究量子系统的非平衡动力学。在这种情况下,Alicki和Fannes [13]于2013年首次引入的量子电池最近引起了很多关注[15-17]。
目前的论文研究了三层热级热储能(TES)储罐系统的热性能的周期截止标准,该系统用于浓缩太阳能(CSP)植物。应用一维瞬态分散式(D-C)方案来计算每个胶囊内部的相变。使用MATLAB软件,已经弄清楚了数值模型方程。已经创建了五种不同的情况,以研究TES储罐热性能的周期截止标准。结果表明,有两个重要方面可以评估系统性能,即在充电/放电周期内的温度分布以及达到平衡条件所需的时间。这些方面直接影响存储系统的整体功率和外部效率,并在理解系统启动属性方面发挥关键作用,并在设计CSP应用程序的功率周期时洞悉存储可用性。还注意到,实现周期性条件所需的周期时间和时间不仅对存储温度差,而且对切割温度差非常敏感。电荷周期持续时间的差异和相应的排放周期可以归因于相似的截止标准。
Dicke 模型描述了量化腔场与大量两能级原子之间的耦合。当原子数量趋于无穷大时,该模型可以转变为超辐射相,属于平均场 Ising 普适性类。超辐射跃迁首次预测是在热平衡原子中发生的,最近利用光腔中原子制成的量子模拟器实现了这一转变,该模拟器既受到耗散也受到驱动。除了这种原子实现之外,Dicke 模型的量子模拟还在许多其他实验系统中得到提出,包括超导量子比特、囚禁离子以及对冷原子使用自旋轨道耦合。在本进度报告中,我们介绍了一些与 Dicke 模型相关的理论概念,回顾了超辐射相变的临界性质,以及平衡和非平衡条件的区别。此外,我们解释了超辐射相变与更常见的激光跃迁之间的根本区别。我们的报告主要关注单模光学腔中原子的稳定状态,但我们也提到了实时动力学的一些方面,以及其他量子模拟器,包括超导量子比特、捕获离子和对冷原子使用自旋轨道耦合。这些实现在描述平衡系统还是非平衡系统方面有所不同。
保持平衡是一项非常重要的技能,支持许多日常生活活动。认知运动干扰 (CMI) 双任务范式已经建立,用于识别复杂的自然运动任务(如跑步和骑自行车)的认知负荷。在这里,我们使用无线、智能手机记录的脑电图 (EEG) 和运动传感器,参与者要么站在坚实的地面上,要么站在走扁带上,要么执行听觉异常任务(双任务条件),要么同时不执行任何任务(单任务条件)。与站在地面上相比,我们预计复杂平衡的 P3 事件相关电位 (ERP) 成分对目标声音的幅度会降低,延迟会延长,与单任务平衡条件相比,双任务的幅度会进一步降低。此外,我们预计在执行并发听觉注意任务时,走扁带时的姿势会更大。二十名年轻、经验丰富的走扁带者执行了听觉异常任务,默数一系列经常出现的标准音调中出现的罕见目标音调。结果显示,在两种运动条件下,P3 拓扑和形态相似。与我们的预测相反,我们既没有观察到 P3 振幅显著降低,也没有观察到在走扁带期间延迟显著增加。出乎意料的是,我们发现与双任务相比,在没有额外任务的情况下,走扁带时的姿势摇摆更大。此外,我们发现参与者的技能水平与 P3 延迟之间存在显著相关性,但技能水平与 P3 振幅或姿势摇摆之间没有相关性。这种结果模式表明,对于技能较低的个体,干扰效应存在,而技能水平较高的个体可能表现出促进效应。我们的研究增加了一个不断发展的研究领域,表明在不受控制的日常生活情况下获得的 ERP 可以提供有意义的结果。我们认为,个人 CMI 对 P3 ERP 的影响反映了平衡任务对未经训练的个体的难度,这会利用原本可用于听觉注意力处理的有限资源。在未来的工作中,对同时记录的运动传感器信号的分析将有助于确定在自然、不受控制的环境中执行运动任务的认知需求。
Covid-19 是由严重急性呼吸综合征冠状病毒 2 引起的,于 2020 年初爆发大流行。该疾病的迅速蔓延促使全球采取前所未有的应对措施,包括学术机构、监管机构和行业。事实证明,疫苗接种和非药物干预措施(包括保持社交距离)是抗击疫情的最有效策略。在这种情况下,了解 Covid-19 传播的动态行为以及可能的疫苗接种策略至关重要。在本研究中,提出了一个易感-感染-移除-患病模型(SIRSi 疫苗),该模型考虑了未报告但具有传染性的病例。该模型考虑了感染或接种疫苗后获得暂时免疫的可能性。这两种情况都会导致疾病的传播。在疫苗接种率和隔离指数的参数空间中,确定了无病平衡和地方病平衡的交替和互斥稳定性的跨临界分叉图。根据模型的流行病学参数确定了这两个点的现有平衡条件。分叉图使我们能够估计每组参数预期的最大确诊病例数。该模型采用了来自巴西圣保罗州首府圣保罗的数据,该数据描述了所考虑数据窗口的确诊感染病例数和隔离指数。此外,模拟结果表明,隔离指数的周期性小幅度波动可能导致易感人群和确诊病例数出现周期性无阻尼振荡行为。所提出的模型的主要贡献如下:当疫苗接种与社会隔离相结合时,只需付出最少的努力,同时还要确保平衡点的存在。该模型可以为政策制定者提供有价值的信息,帮助制定结合疫苗接种和非药物干预措施(例如保持社交距离和佩戴口罩)的疾病预防缓解策略。此外,SIRSi 疫苗模型促进了对未报告的感染但具有传染性的病例信息的定性评估,同时考虑了暂时免疫、疫苗接种和社会隔离指数。© 2023 ISA。由 Elsevier Ltd. 出版。保留所有权利。
摘要流行病和大流行病困扰人类已有许多世纪。在现代,它们是造成重大医疗费用的一个原因。2019-2020 年新型冠状病毒大流行在全球的传播速度比以往许多大流行都要快。尽管个人防护设备和保持社交距离减缓了疫情的蔓延,但疫苗的需求成为确保全球免疫和阻止致命疫情的唯一策略。在公共卫生危机时期开发疫苗充满了伦理难题,而这些难题在这种时候往往会被忽视。其中包括适当的知情同意、在研究的对照组中放置安慰剂以及利用弱势群体等。本评论讨论了与大流行情况下的疫苗开发、二次疫苗开发和平衡条件有关的问题。关键词:疫苗;伦理;COVID-19;埃博拉;大流行;药物开发;知情同意; Equipoise 引言 几个世纪以来,流行病和大流行病一直是人们关注的重大健康问题。早在 17 世纪,天花从欧洲定居者传播到北美,再到 2019 年的新型冠状病毒,疫苗研发一直是应对大流行病的一个有争议的问题 (Carlsen & Glenton, 2016; Kaur & Gupta, 2020)。1918 年的猪流感疫情促使研究人员试图加快研发病毒性流行病/大流行病疫苗和药物所需的时间。1918 年流感疫情疫苗的研发速度很快,并在一年内分发完毕;然而,由于疫苗研发过程还处于起步阶段,该疫苗并没有取得太大成功 (Schwartz, 2018)。从 20 世纪 30 年代开始,研究、病毒学、疫苗研发和临床试验的进步有助于研发出更有效的流感疫苗。这导致了 1942 年第一种主要流感疫苗的开发,该疫苗含有许多不同的流感病毒株。1957 年的流感疫情得到了及时控制,因为已经开发了一种针对一般流感病毒株的疫苗。1957 年的科学家能够使用相同的背景研究快速开发出针对 1957 年 H2N2 疫情的疫苗(Mackenzie 等人,2012 年)。这一发展将疫情的死亡人数控制在 110 万人,而估计死亡人数超过 200 万人。此后,由于疫苗的快速发展,许多疫情都得到了显著控制。然而,作者认为,每次加速疫苗开发都伴随着一系列道德考量。这些考量包括但不限于在试验中使用安慰剂、知情同意程序以及疫苗开发的时间因素。除了这些问题外,还存在与第一种疫苗获得 FDA 批准后继续开发第二种和第三种疫苗有关的问题
简介:从无序的非生物系统到有组织的分子结构的转变对我们理解热力学提出了重大挑战。尽管第二定律规定熵普遍增加,但表现出高分子复杂性的局部区域(例如生命早期涉及的区域)表明某些环境可以保持持续的偏离平衡状态。揭示促成这些转变的物理条件和机制对于解释生命起源前化学的出现和更广泛的自组织系统现象至关重要。在这里,我们对纳米裂缝网络可能产生的自调节富含热水的环境和量子隧穿介导的有机物合成增加的潜力进行了初步评估。我们还提出了一个初步的理论框架,该框架结合了多种形式的熵,以开发一种方法来独立追踪不确定性和无序属性,这些属性可能会推动由无生源论所暗示的新兴复杂性。纳米裂缝中的热自调节:维持宜居性:在纳米级裂缝中,水的热导率偏离其本体值 0.6 Wm -1 K -1 ,在三个范围内表现出类似阈值的转变:60 °C 以下:在矿物表面附近形成以刚性氢键为特征的冰状层,降低至 0.2–0.4 Wm -1 K -1 。60–100 °C:这些刚性层的部分破坏和与矿物晶格的声子耦合增加升至 0.3–0.6 Wm -1 K -1 。在这个中间范围内,该系统实现了一种自我热调节或“优先稳定性”,因为增量加热仅破坏了氢键网络的一部分,同时保留了足够的结构以防止完全转变为纯声子主导的传导。 100 °C 以上:结构化水的分解导致主要由声子驱动的热传输,推高至 0.6 Wm -1 K -1 以上,并接近 150– 200 °C(1.5–2 eV)时的键降解阈值。减半会使温度减半和加倍。较低的温度会使区域更长时间保持高温,促进高活化能反应并稳定冰状网络。局部加热会破坏 H 键晶格,形成保持秩序的反馈回路。这些非平衡条件产生不同的温度-时间曲线,从而实现原本无法接近的途径。我们注意到,关于水在纳米级裂缝中降低的热导率(0.3–0.6 Wm -1 K -1 )、连续热模型的有效性以及在纳米尺度上水的导热系数降低(0.3–0.6 Wm -1 K -1 )仍然存在不确定性。
技术行业向聊天机器人提问真空技术用于在低气压条件下进行的各种过程和物理测量。发生这种情况的原因有很多,包括去除可能引起反应的大气成分、破坏正常室温下的平衡、延长粒子行进距离以最大限度地减少碰撞以及减少分子撞击以防止表面污染。真空过程中允许的最大压力受单位体积分子数、平均自由程或形成单分子层所需时间等因素限制。在室温和正常大气压下,1 立方英尺的空气中约有 7 × 10^23 个分子高速运动。通常使用一柱汞的重量来表示大气压,一个标准大气压等于 760 毫米汞柱或 760 托。帕斯卡单位后来被采用为压力测量的国际单位,相当于 7.5 × 10^-3 托。真空技术的使用可以追溯到 20 世纪初的电灯泡制造和电子管生产。它使一些工艺能够取得优异的结果或实现在正常条件下无法达到的结果,例如镜片表面晕染和血浆制备。核能的出现带动了真空设备的大规模发展,其应用扩展到空间模拟、微电子等领域。人们已经开发出各种容量的产生、维持和测量真空的设备,从每分钟 1/2 到 1,000 立方英尺不等。单级泵的压力水平可低至 2 × 10^-2 托,双级泵的压力水平则低于 5 × 10^-3 托。泵从大气压到大约 1 托达到全速,然后在极限压力下转速降至零。双叶片泵采用偏心转子设计,适用于泵送液体和气体。另一种类型是旋转活塞泵,它类似于单叶片泵,但包含一个用作进气阀的空心叶片,当转子到达最高点时,叶片会关闭泵。极限压力水平受高压侧和低压侧之间泄漏的限制,泄漏是由于密封油中的气体夹带以及摩擦引起的油分解造成的。这种泵的典型应用包括食品包装、高速离心机、紫外光谱仪,以及作为其他泵的前级泵或低真空泵。容量范围为每分钟 100 至 70,000 立方英尺,工作压力范围为 10 至 10^-3 托。峰值速度通常在 1 至 10^-2 托的压力范围内产生。机械增压器使用同步的 8 字形叶轮和定子将气体从高真空侧转移到前真空侧。机械增压器在正常压力范围内运行时通常需要另一个泵作为后备。机械增压器的常见应用包括真空熔炼炉、电气设备浸渍设备和低密度风洞。真空技术在各行各业都至关重要,因为所有工艺和测量都是在低于正常大气压的条件下进行的。这样做通常是为了去除可能在工艺过程中引起物理或化学反应、扰乱平衡条件、延长粒子行进距离或减少每秒分子撞击次数的大气成分。最大允许压力可以根据各种参数定义,包括单位体积的分子数、平均自由程或形成单分子层所需的时间。在室温和正常大气压下,空气中约有 7 × 1023 个分子以随机方向运动,速度约为每小时 1,000 英里。传递给壁面的动量交换相当于每平方英寸壁面面积产生 14.7 磅的力。大气压可以用各种单位表示,包括单位横截面积、高 760 毫米的汞柱的重量。这导致了替代单位的开发,例如帕斯卡,其定义为牛顿每平方米。真空技术的首次大规模应用发生在 20 世纪初,用于制造电灯泡。随后出现了其他需要在真空下运行的设备,包括各种类型的电子管。人们发现某些在真空中进行的过程可以取得优异的结果,或在正常条件下无法实现的结果,这导致了进一步的发展。20 世纪 50 年代核能的出现推动了真空设备的大规模发展。人们发现了越来越多的真空过程应用,包括空间模拟和微电子技术。人们开发了各种用于产生、维持和测量真空的设备。其中包括容量从每分钟 1/2 到 1,000 立方英尺不等的泵,工作压力从大气压到低至 2 × 10-2 托或低于 5 × 10-3 托。其中一种设备是双叶片泵,可以泵送液体和气体。另一种类型是旋转活塞泵,它类似于单叶片泵,但有一个空心叶片作为进气阀。其可用容量范围从每分钟100立方英尺到高达70,000立方英尺,通常在10托到0.01托的压力下工作。然而,峰值性能在1-0.1托的较窄范围内实现,速度取决于所用前级泵的类型。机械增压泵的特点是两个8字形叶轮,它们在固定定子内以相反的方向旋转。气体被夹在这些叶轮和定子壁之间,然后被输送到泵的另一侧。值得注意的是,这种泵在与另一台在其典型压力范围内串联工作的泵配对时,运行效果最佳。一种常用的前级泵是油封旋转泵。机械增压泵通常用于真空熔炼炉、电气设备浸渍设备和低密度风洞。