全球变暖导致电动汽车 (Evs) 的广泛采用,它似乎是内燃机的最佳替代品。由于道路上的电动汽车数量增加,使用传统的基于化石燃料的电网为汽车充电既不高效也不经济。基于可再生能源的充电站为电动汽车充电提供了控制。该项目描述了基于太阳能和风能的充电机制 (SWCM),用于为电动汽车的电池组充电。可再生充电站由风力发电机和 PV (太阳能光伏) 模块组成。基于风能的充电机制极大地减少了对化石燃料发电的需求,从而减少了二氧化碳和 CO2 相关排放。针对当前情况,设计了一个集成太阳能、风能、电网和 BESS (电池储能系统) 的电动汽车 (EV) 充电站。为了在充电站中不间断供电,还考虑了额外的电网支持,而不会给电网带来额外的负担。为了平衡负载需求,该系统通过单相双向 DC-AC(交流)逆变器连接到电网。结果表明,可再生充电机制适用于电动汽车充电,并创造了无污染的环境。
风能和太阳能光伏能源系统的间歇性特性导致发电量波动,因为电力输出高度依赖于当地天气条件,从而引发负载遮蔽问题,而负载遮蔽问题又导致电压和频率不稳定。除此之外,高比例的不稳定可再生能源会导致频率变化不稳定,从而影响电网稳定性。为了减少这种影响,大多数风能-太阳能系统通常使用储能系统来平衡负载变化期间的电压和频率不稳定性。一种创新的储能系统是用于风能和太阳能混合能源系统的压缩空气储能系统 (CAES),这项技术是本研究的重点。本研究的目的是通过建模和实验方法检查 CAES 系统的系统配置,并设计 PID 控制器来调节不同负载条件下的电压和频率。本文介绍了基本元件和整个系统,并在 MATLAB/Simulink 环境中针对不同负载条件进行了粗略建模。在德库尔特理工大学西门子实验室的压缩空气储存原型机上,通过实验工作台对开发的模型进行了测试,并探讨了工作参数对系统效率和模型准确性的影响。性能
摘要:减少温室气体 (GHG) 排放的目标激发了人们对来自时变来源(例如光伏、风能)的可再生能源系统的兴趣,这些系统可能需要电池来帮助平衡负载。然而,电池本身在其生命周期的所有阶段都会给电力系统增加额外的温室气体排放。本文首先调查了两种固定式锂离子电池制造的温室气体排放,比较了欧洲、美国和中国的生产情况。接下来,我们分析了这些电池的安装和运行如何改变两个试点站点的电力供应的温室气体排放。生命周期评估用于计算温室气体排放量。电池制造温室气体排放的区域比较表明,原铝、阴极糊和电池单元生产是电池制造温室气体排放的主要组成部分。区域差异主要与高电网电力需求和电力结构的区域变化有关,导致基准值为 77 kg CO 2 -eq/kWh 至 153 kg CO 2 -eq/kWh 电池容量。对两个试点的评估表明,如果电池的运行能够增加电力系统中的可再生能源,那么使用电池可以节省高达 77% 的温室气体排放。