3 DOC方法是通过脱气(然后在地质地下储层中持久隔离的)CO 2进行的。CO 2贫困的水被返回到海洋中,从而使海水随着时间的流逝而从大气中重新校准并吸收CO 2。与OAE一样,CO 2重新平衡过程以不受控制的方式发生在开阔的海洋中。请注意,尽管CO 2最初是在封闭的系统中提取的,但该CO 2已经持久存储在海水中的无机物种中,并且在随后在Open Ocean中重新静止的过程中发生了实际的CO 2去除。
摘要:自发发射是最基本的平衡过程之一,在这种过程中,激发量子的发射极因量子的波动而放松到基态。在此过程中,发出一个可以与附近发射器相互作用并在它们之间建立量子相关的光子,例如,通过超级和亚表达效应。修改这些光子介导的相互作用的一种方法是通过将光子晶体放在它们附近来改变发射极的偶极辐射模式。最近的一个例子是通过使用具有线性等音轮廓和鞍点的带状结构的光子晶体来生成强大的方向散发模式 - 增强超级和次级效应的关键。但是,这些研究主要使用了过度简化的玩具模型,俯瞰了电磁场在实际材料中的复杂性,包括几何依赖性,发射器位置和极化等方面。我们的研究深入研究了这些定向发射模式与上述变量之间的相互作用,从而揭示了未开发的计算量量子量子光学现象。
FJH的可伸缩性使其成为合成FG的有前途的方法,但是在这个遥远的平衡过程(FFE)过程中,许多未知数仍然存在,7使得它很难成为处理 - 属性关系。8,9最近出现的数据驱动建模可能提供替代解决方案。在过去的几年中,一些模型被证明是针对各种挑战在内的强大的,包括指导材料合成。10 - 14此外,我们最近对纯数据驱动的模型进行了构建,以发现控制FG产量的参数。15然而,尽管在预测FG产量方面达到了令人印象深刻的准确性,但模型性能取决于从反应中测得的当前参数。因此,如果尚未执行实验,则这些中间参数不可用,作为预测的输入参数。因此,无法应用此类模型来准确预测一组新的直接输入参数的反应结果,例如电压,脉冲持续时间和电容
针对深厚复合地层TBM隧道小比例模型试验中开挖、管片模拟、变形、受力等难题,综合利用TBM模拟实验装置、模型管片环预制装置、数字摄影测量技术,提出计算方法。通过对围岩变形特征及破裂分析,揭示了围岩变形的时空效应:(1)无支撑时,围岩变形的时空效应集中在以下工况:随着时间的推移,围岩变形从复合地层交界处的拱腰两侧开始,衍生出四个圆弧并发生剪切滑移,导致整体垮塌破坏。(2)支撑后,围岩变形的时空效应集中在围岩与支撑相互作用的3个阶段,即初期阶段、平衡过程和失稳状态。空间效应集中在围岩变形破坏区域,最严重区域为浅层围岩,次剧烈区域为边墙拐角处。
6.6线平衡植物具有连续流动过程,并产生大量标准化组件更喜欢输送机组装线。在这里,工作中心的测序是在每个阶段进行一定数量的总工作进行的,以便在传送带线结束时,最终产品出现了。这需要仔细的预备,以平衡每个工作中心之间的时机,以使空闲/等待时间最小化。这种内部平衡过程称为组装线平衡。线平衡定义为创建工作站并根据预定的技术序列为其分配任务的过程,以便将每个工作站的空闲时间最小化。在完美的线平衡中,每个工作中心都在固定的持续时间内完成其分配的工作,以使所有操作的输出在生产线上相等。如此完美的平衡很难实现。某些工作站/中心花费更多的操作时间,导致后续工作中心变得闲置。平衡可以通过
高效的轨迹预测工具将成为未来基于轨迹的运营 (TBO) 的关键功能。除了控制器操作之外,爬升飞行中的不确定性是飞行轨迹预测误差的主要组成部分。由于运营问题,飞机起飞重量和爬升速度意图(定义爬升曲线的关键性能参数)并不完全适用于基于回合的轨迹预测基础设施。在空中交通流量管理范围内,扇区进入和退出时间(包括爬升结束和下降开始的时间)是需求容量平衡过程的主要输入。在这项工作中,我们专注于爬升轨迹的不确定性,以量化和分析它们对爬升到巡航高度的时间的影响。我们通过飞机飞行记录数据集(即QAR)使用了模型驱动的数据统计方法。分析结果为飞机起飞重量和速度意图生成了概率定义。获得了这些爬升参数与飞行距离之间的回归,以减少战略层面的不确定性。此外,通过自适应不确定性减少来降低爬升不确定性也在飞行战术层面得到证明。通过模拟,说明了降低飞机质量不确定性对爬升时间的影响。关键词:空中交通管理、轨迹预测、不确定性量化、BADA 缩写
摘要 高效的轨迹预测工具将成为未来基于轨迹的运营 (TBO) 的关键功能。除了管制员的行动之外,爬升飞行中的不确定性是飞行轨迹预测误差的主要组成部分。出于运营方面的考虑,飞机起飞重量和爬升速度意图(定义爬升剖面的关键性能参数)并不完全适用于基于回合的轨迹预测基础设施。在空中交通流量管理范围内,扇区进入和退出时间(包括爬升结束和下降开始的时间)是需求容量平衡过程的主要输入。在这项工作中,我们专注于爬升轨迹的不确定性,以量化和分析它们对爬升至巡航高度的时间的影响。我们通过飞机飞行记录数据集(即 QAR)使用了模型驱动的数据统计方法。根据此分析,为飞机起飞重量和速度意图生成了概率定义。获得了这些爬升参数与飞行距离之间的回归,以减少战略层面的不确定性。此外,通过自适应不确定性减少来降低爬升不确定性也在飞行战术层面得到体现。通过模拟,说明了降低飞机质量不确定性对爬升时间的影响。关键词:空中交通管理、轨迹预测、不确定性量化、BADA 缩写
前列腺癌(PCA)在发达国家中越来越普遍。局部PCA存在有效的治疗选择,但是转移性PCA的治疗选择较少,并且患者的生存率较短。PCA和骨骼健康紧密地交织在一起,因为PCA通常转移到骨架上。由于雄激素受体信号传导驱动PCA生长,因此后遗症降低骨骼强度构成了晚期PCA治疗的基础。骨骼重塑的体内平衡过程 - 由骨建造成骨细胞,骨质骨细胞和调节性骨细胞的一致作用产生。驱动骨骼发育和稳态的机制,例如区域缺氧或基质填充的生长因子,可以被骨转移性PCA征服。以这种方式,维持骨骼的生物学被整合到PCA在骨中生长和存活的自适应机制。由于骨骼生物学和癌症生物学的纠缠性质,骨骼转移性PCA很难进行研究。在此,我们从起源,表现和临床治疗中调查PCA到PCA转移对骨的骨组成以及结构以及分子介质。我们的目的是快速却有效地减少了跨多个学科的团队科学障碍,该学科的重点是PCA和转移性骨病。我们还介绍了组织工程的概念,作为一种新颖的观点,以建模,捕获和研究复杂的癌症微环境相互作用。
I.简介 高速风洞通常依靠压力和/或温度测量以及喷嘴流量计算来确定自由流条件。这种做法可能需要对气体的热化学状态进行复杂的处理。当空气或 N 2 从停滞的储层流向自由流马赫数 M ∞ > 6 时,热量完美气体假设开始失效。喷嘴中的快速膨胀可能需要对热力学非平衡过程进行建模,如果气体停滞到高焓,还必须考虑非平衡化学 [1]。此外,对于高储层密度,可能需要使用排除体积状态方程 [2,3]。尽管这些流动的建模框架是可处理的,但与热化学速率过程有关的一些基本原理仍然是一个持续的研究课题 [1]。验证这些运行条件和喷嘴流量计算的一种方法是在自由流中直接测量。基于粒子的测速方法,例如粒子图像测速,可以产生高质量的多组分速度数据 [4]。然而,在大型高速设施中实施基于粒子的技术所面临的工程挑战包括时间、粒子接种密度和均匀性,以及在注入粒子时最大限度地减少流动扰动 [5]。更重要的是,在高速风洞中,典型的克努森数和雷诺数 [6] 下粒子响应降低存在根本限制,这可能会影响精细时间和长度尺度的分辨率。与基于粒子的技术的局限性相比,标记测速技术的实施不受上述大型高速设施中问题的限制。标记测速技术的著名方法和示踪剂包括VENOM [7]、APART[8]、RELIEF[9]、FLEET[10]、STARFLEET[11]、PLEET[12],
癫痫是最常见的神经系统疾病之一,其特征是由大脑电功能短暂紊乱引起的反复发作。在30%的病例中,这种疾病无法通过药物或切除成功治疗,直接影响患者的生活质量。因此,人们对开发可靠的工具来预测癫痫发作、帮助做出决策、或至少在癫痫发作时提醒患者做好准备有着浓厚的兴趣。所提出的癫痫发作预测方法基于头皮脑电图 (EEG) 的时频分析和使用空间滤波技术提取能够区分发作间期和发作前活动的特征。通过离散小波变换分解获得的脑电图的 theta、alpha 和 beta 节律系数受到常见空间模式滤波技术的影响。提取统计和熵相关属性,然后选择特征并将其应用于具有高斯核的 SVM 分类器,以区分大脑状态为发作前或非发作前。对来自波士顿儿童医院和麻省理工学院 (CHB-MIT) 数据库的 17 名难治性癫痫患者的多通道表面记录进行了评估。在后处理步骤中还比较了卡尔曼滤波器和中值滤波器两种技术,以平滑分类器结果。每个 EEG 时期的最终决定都是在经过平衡过程后做出的。最佳结果显示样本分类的平均准确率为68.8%。警报生成器报告的误报率为每小时0.334。