GPU 在多个领域得到日益广泛的应用,包括高性能计算 (HPC)、自主机器人、汽车和航空航天应用。GPU 在传统领域之外的应用(游戏、多媒体和消费市场)突然引起了人们的兴趣,也提出了有关其可靠性的问题 [3]。目前,活跃的 GPU 研究旨在评估可靠性并确定可行的改进方法。大多数研究都强调 GPU 对瞬态故障的高度敏感性 [11、13、16、24、27、32、44、47、51],这是由于 GPU 拥有大量可用资源且采用了先进的半导体技术。此外,GPU 的并行管理和控制单元已被证明尤为关键,因为它们的损坏会影响多个线程 [24、38]。 GPU 的并行性在性能方面提供了无可置疑的优势,但它也是该设备最脆弱的特性之一。GPU 制造商通过改进存储单元设计 [ 39 ]、添加纠错码 [ 15 ] 等措施提供了有效的可靠性对策,
摘要 — 随着逆变器资源 (IBR) 集成度的提高,确保大容量电力系统的可靠运行需要使用电磁暂态 (EMT) 仿真工具来识别和减轻全系统稳定性风险。然而,对大规模、富含 IBR 的电网进行 EMT 研究具有挑战性,因为底层高保真模型和所需的小时间步骤造成了固有的计算瓶颈。本文介绍了 ParaEMT:一个开源的通用 EMT 仿真框架,旨在通过利用先进的并行计算技术(如高性能计算机)来加速仿真。本文全面阐述了 ParaEMT,涵盖了其建模库、仿真策略、框架结构、操作程序和辅助功能,以及其可扩展的并行计算架构。值得注意的是,ParaEMT 是一个用 Python 编写的可公开访问的模块化框架,从而促进了未来的开发和新模型和算法的集成。通过多个案例研究的严格验证证明了 ParaEMT 的准确性和效率。
零知识证明(ZKP)是一种强大的加密原理,用于许多分散或以隐私为中心的应用程序。但是,ZKP的高开销可以限制其实际适用性。我们设计了一种编程语言OU,旨在在编写有效的ZKP时减轻程序员的负担以及编译器框架Lian,该框架可以自动化对计算集群的语句分析和分布。lian使用编程语言语义,形式方法和组合优化,将OU程序自动将OU程序划分为有效尺寸的块,以进行并行ZK提供和/或验证。我们贡献:(1)一种前端语言,用户可以在熟悉的语法中将证明语句写为命令式程序; (2)自动分析程序并将其编译成优化的IR的编译器体系结构和实现,可以将其提升为各种ZKP构造; (3)基于伪树状优化和整数线性编程的切割算法,将指令重新定义,然后将程序分配为有效尺寸的块,以进行并行评估和有效的状态和解。
现代时代目睹了将构造扩展到大型数据集的能力的革命。可伸缩性的关键突破是引入快速且易于使用的分布式编程模型,例如MapReduce(Dean和Ghemawat,2008年),Hadoop(Hadoop.apache.org)和Spark(Spark.apache.org)。我们将这些编程模型称为大规模并行框架。大规模并行框架最初是针对相对简单的计算类型设计的,例如计算数据集中的单词频率。从那以后,它们被证明对更丰富的应用程序非常有用。最近的工作目的是以释放其真正的潜在力量并扩大其适用性来研究这些框架算法。希望通过算法研究,取得与诸如合规算法等主题相似的成功(Frigo等人。,2012年)和数据流算法(McGregor,2014年)。实际上,大量分布式框架使程序员能够轻松地将算法在数十万台上部署到数千台机器。算法,这些框架对其计算表达能力有限制,以帮助确保程序有效地平行。
背景:今天,个人倾向于在许多领域使用天然产品而不是合成添加剂。榛子树产生许多副产品和水果。坚果及其副产品富含生物活性化合物。目标:本研究研究了从榛子及其废物产品中获得的水和乙醇提取物的生物学活性,以确定其在化妆品行业中的潜在用途。方法:在这项实验研究中,将椎间盘差异测试,最低抑制浓度(MIC),最小杀菌浓度(MBC)或最低杀真菌浓度(MFC)应用于提取物的抗微生物潜力。在体外确定提取物和商用奶油 +提取物混合物的太阳保护因子(SPF)。此外,开发了来自人牛奶的抗菌乳霜配方和发酵酸酯的MA-7益生菌候选乳酸细菌的抗菌乳霜配方,为制药行业开发了从人乳中的乳酸细菌,以防止感染。对测试微生物进行了良好的分解测试,以评估抗菌活性。结果:榛子壳甲醇提取物的直径最高(19.41 mm)对Yersinia ruckeri。提取物的麦克风,MBC或MFC范围从1.25至> 40 µ g/ µL。提取物的SPF值(范围:6.85-27.64)和商用奶油 +提取物(范围:11.92-26.28)在体外确定其潜在用途。含有榛子提取物和益生菌的奶油群对测试的微生物表现出很高的抗菌作用。统计分析的结果表明,与其他测试组相比,奶油 +提取物 +益生菌 +益生菌上清液组在统计学上是显着的(p <0.05)。结论:结果表明,榛子及其副产品有可能用作自然抗菌剂来源。榛子及其副产品可以替代化妆品工业中合成的抗微生物和防晒霜作为天然生物活性物质。此外,它可能通过评估榛子及其在化妆品行业的加工而产生的榛子及其废物和副产品来促进该国的经济。
摘要:考虑数据可靠性,用于相位不连续性重构的对偶残差优化连接提供了更可靠的方案并产生了更稳健的解缠结果。然而,它们的实际实现通常涉及耗时的迭代全局操作,不适合应用于大块干涉合成孔径雷达(InSAR)相位数据的相位解缠(PU)。提出了一种基于局部最小可靠性对偶扩展的并行PU方法。在给定质量权重图的情况下,基于残差定义对偶可靠性,并引入最小可靠性残差对来表示可能的不连续边界。我们提供了一种具有局部最小可靠性搜索和对偶合并的对偶动态扩展方法。最终获得的最小平衡树用于在可靠性图的帮助下对PU进行路径集成。可靠性图的计算、残差对搜索和动态扩展被设计为并行进行。我们采用基于艾科纳方程和洪水填充的界面传播方案进行并行实现。采用所提方法处理了两大块机载 InSAR 数据,实验结果和分析验证了该方法对大规模 PU 问题的鲁棒性和有效性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制
Transformer 模型的成功将深度学习模型规模推向了数十亿参数,但单 GPU 的内存限制导致在多 GPU 集群上进行训练的需求迫切。然而,选择最优并行策略的最佳实践仍然缺乏,因为它需要深度学习和并行计算领域的专业知识。Colossal-AI 系统通过引入统一接口将模型训练的顺序代码扩展到分布式环境,解决了上述挑战。它支持数据、管道、张量和序列并行等并行训练方法,并集成了异构训练和零冗余优化器。与基线系统相比,Colossal-AI 在大规模模型上可以实现高达 2.76 倍的训练加速。
任务概述:技术、工程和质量局系统工程处负责以下主要活动:• 为 ESA 项目提供成本工程支持、工具和估算;• 为处于各个开发阶段的项目提供系统工程支持;• 开展与系统工程方法和工具有关的研发活动;• 管理和为小型航天器项目提供技术演示的技术支持,包括准备活动(可行性研究、预开发等);• 管理和为小型在轨技术演示项目提供技术支持(仪器、有效载荷等);• 管理并行设计设施(CDF)并执行 ESA 项目的第 0 阶段和支持活动。
图 1:部件编号订购选项 ................................................................................................................................ 5 图 2:器件引脚排列 ................................................................................................................................ 7 图 3:142 球 FBGA ................................................................................................................................ 9 图 4:142 球 FBGA ................................................................................................................................ 10 图 5:功能框图 ...................................................................................................................................... 11 图 6:上电行为 ...................................................................................................................................... 12 图 7:写操作 ...................................................................................................................................... 17 图 8:写操作(E# 控制) ................................................................................................................ 18 图 9:总线周转操作 ................................................................................................................................ 19 图 10:读操作 ........................................................................................................................................ 20 图 11:4 字异步页面模式与传统异步模式的比较 ...................................................................................... 21 图 12:页面模式功能框图 ................................................................................................................ 22 图13:异步页读操作 ...................................................................................................................... 22 图 14:异步页写操作 ...................................................................................................................... 23 图 15:页写到单次写时序图 .............................................................................................................. 23 表 1:技术比较 ...................................................................................................................................... 4 表 2:有效组合列表 ................................................................................................................................ 6 表 3:信号描述 ...................................................................................................................................... 7 表 4:上电/断电时序和电压 ................................................................................................................ 13 表 5:器件初始化时序和电压 ................................................................................................................ 14 表 6:建议工作条件 ........................................................................................................................ 14 表 7:引脚电容 ........................................................................................................................................................................................................................ 14 表 8:直流特性 ...................................................................................................................................... 15 表 9:磁抗扰度特性 .............................................................................................................................. 15 表 10:交流测试条件 ............................................................................................................................. 15 表 11:绝对最大额定值 ...................................................................................................................... 16 表 12:写操作(W# 控制) ............................................................................................................. 17 表 13:写操作(E# 控制) ............................................................................................................. 18 表 14:写操作 ................................................................................................................................ 19 表 15:读操作 ................................................................................................................................ 20 表 16:页面模式交流时序 ................................................................................................................ 24 表 16:耐用性和数据保留 ................................................................................................................ 24 表 17:热阻规格 .......................................................................................................................... 25........................................................................... 24 表 16:耐久性和数据保留时间 ...................................................................................................... 24 表 17:热阻规格 ...................................................................................................................... 25........................................................................... 24 表 16:耐久性和数据保留时间 ...................................................................................................... 24 表 17:热阻规格 ...................................................................................................................... 25
摘要,由于大气逃离了数十亿年的空间,火星的大气相对于地球的沉重同位素富集。估计这种富集需要对所有大气过程有严格的理解,这些过程有助于逃避过程的下层大气和上层大气之间的同位素比的演变。我们结合了通过大气化学套件在车载上获得的CO垂直谱的测量值,Exomar痕量气臂上的预测和光化学模型的预测,找到了光化学诱导的分馏过程的证据,从而消耗了CO和O的重量(Δ13C = -160 C = -160±90±90±)和±90±)。在上层大气中,考虑到这一过程的逃脱分级因子降低了约25%,这表明C从火星的大气中逃脱了比以前想象的要少。在下部大气中,将这种13个耗尽的CO分馏掺入表面可以支持最近发现的火星有机物的非生物起源。1。主文本1.1简介的地貌和矿物学证据线条表明,液态水曾经在火星的表面1,2上很丰富,但是目前尚不清楚我们今天观察到的是什么气候条件,或者是什么使气候促进了气候过渡到气候过渡到干燥,低压大气的原因。在诸如N和H等几种物种的沉重同位素中富集表明,大气逃生是整个历史上大气的气候和大气组成的重要机制3,4。将测得的大气同位素比与进化模型相结合,可以估计火星早期大气中物种的丰度,这证明了对大气同位素组成5-7的透彻理解的价值。对大气从同位素组成的长期演变的准确估计取决于两个重要数量:过去和现在同位素比的测量以及净逃逸分级因子,这决定了重型 - 同位素富集的效率,这是大气逃避到空间的效率8,9。好奇心流动站对C和O大气中C和O的同位素组成的最准确测量是由好奇心漫游者制作的,这表明CO 2在CO 2中的重量同位素在类似地球的标准中(13 C/ 12 C = 1.046±0.004 VPDB和18 O/ 16 O = 1.046 O/ 16 O = 1.048 o/ 16 O = 1.048±0.0055