1 简介 螺旋角羚羊与牛亚科中的野牛和四角羚羊有关。它们是由类似于现在的四角羚羊和蓝牛羚的动物进化而来的。螺旋角是覆盖在骨质核心上的一层角蛋白。它沿着脸部平面向后弯曲,呈现出戏剧性的螺旋效果。它的大小和长度部分取决于身体大小,但这种扭曲是对其四角祖先的回归。两组角的融合可能是由于头骨额脊上的角蛋白以不同于主角的速度生长,从而产生了螺旋效果。(Macdonald 2006)人们认为,大羚羊是从大约 130 万年前大量存在的巨型捻角羚进化而来的。它们是各种各样大多不稳定的栖息地中的绿叶拾荒者。它们不能忍受真正的沙漠。社会结构尚不成熟。群居不是由栖息地引起的,而被认为是雌性和幼年动物的一种防御策略。这也可能是雌性长出角的原因。(Kingdon 2007)当它们受到攻击时,大羚羊会用角来保护身体的所有部位。在与其他雄性打斗时,角会突出身体的大小,对确立统治地位很重要。雌性往往更为普通。(Macdonald,2006)普通大羚羊,也称为“南部大羚羊”,是一种在东非和南非发现的草原和平原羚羊。它被认为是最大的羚羊物种,尽管在许多方面它们与牛很像。大羚羊的大小与普通大羚羊相似,但发现于非洲更北部的地区。种群密度和死亡率往往受食物供应、掠食、疾病和人类存在的影响。牧场主为牛群设置围栏,扰乱了大羚羊的自然迁徙路线。这影响了它们获得充足食物的途径。在连续几个季节的降雨量低于平均水平后,干旱导致的死亡很常见。大羚羊,尤其是小羚羊,是许多大型食肉动物(如狮子、鬣狗、野狗和猎豹)的重要食物来源。因此,大羚羊已经从它们以前的大部分栖息地消失,这主要是由于过度狩猎和栖息地丧失。然而,它们仍然分布广泛,在国家公园中也有很好的代表性。它们在当地属于易危或濒危物种(在乌干达和卢旺达),但总体上并不濒危。(Kingdon 2007)大羚羊被认为是温顺的,很容易驯服。然而,它们需要很大的放牧区域。在南非纳塔尔,它们被驯化用于肉类和奶制品的生产。大羚羊奶的脂肪含量几乎是奶牛牛奶的三倍,蛋白质含量是奶牛牛奶的两倍。(Pappas 2002;Benoit 2008;Kingdon 2007)
本文件介绍了 Orencia® (阿巴西普) 的使用,该药物经美国食品药品管理局 (FDA) 批准用于治疗类风湿性关节炎、银屑病关节炎、幼年特发性关节炎和急性移植物抗宿主病 (aGVHD)。该药物有静脉注射和皮下注射两种剂型。背景信息美国风湿病学会 (ACR) 指南建议将改善病情的抗风湿药 (DMARD) 单药疗法作为中度至高度疾病活动度 RA 患者的一线治疗。建议使用甲氨蝶呤 (MTX) 单药疗法,剂量至少为 15 毫克,优于羟氯喹、柳氮磺吡啶和来氟米特。还建议使用甲氨蝶呤单药疗法,优于生物制剂(肿瘤坏死因子抑制剂 [TNFi]、IL-6 抑制剂、阿巴西普)或 JAK 抑制剂单药疗法。对于服用最大耐受剂量 MTX 但未达到目标的患者,建议添加生物制剂或 JAK 抑制剂。对于心力衰竭患者,有条件推荐使用非 TNFi 生物制剂或 JAK 抑制剂,而不是 TNFi。美国风湿病学会 (ACR) 指南建议,对于活动性重度 PsA 或伴有银屑病的患者,初始治疗应包括 TNFi 生物制剂,而不是口服小分子(OSM;包括甲氨蝶呤、柳氮磺吡啶、环孢菌素、来氟米特和阿普斯特)。对于初始治疗,OSM 优于 IL-17 和乌司他单抗;对于无合并症的轻度至中度疾病或喜欢口服治疗的患者,OSM 可能优于 TNFi 生物制剂。将生物制剂作为一线治疗的建议是有条件的,并且基于低质量证据。引用的证据包括安慰剂对照试验的间接比较、开放标签设计的研究以及从斑块性银屑病研究中推断的结果。此外,大多数 TNFi 生物制剂的关键试验都包括接受过 DMARD 治疗的研究人群。总体而言,对于大多数银屑病关节炎患者的初始治疗,缺乏确凿的证据表明生物药物比传统疗法更安全、更有效。ACR 指南还包括针对尽管使用 OSM 治疗但疾病仍处于活动状态的患者的建议。在这里,TNFi 生物制剂优于其他疗法,包括 IL-17 抑制剂、乌司他单抗、托法替尼和阿巴西普。当不使用 TNFi 生物制剂时,IL-17 抑制剂优于乌司他单抗;这两种药物都优于托法替尼和阿巴西普。对于尽管使用 TNFi 单药治疗但疾病仍处于活动状态的患者,建议改用其他 TNFi 而不是其他疗法。美国风湿病学会 (ACR) 指南为青少年特发性关节炎提供了建议,包括系统性疾病 (SJIA) 和伴有多关节炎的 JIA (PJIA)。SJIA 是一种自身炎症性疾病
o Verview Lenmeldy是一种自体造血干细胞(HSC)基于基因治疗,用于治疗症状前婴儿晚期(PSLI),症状前早期青少年(PSEJ)或早期症状早期(PSEJ)或早期幼年(ESEJ)早期(ESEJ)过通(ESEJ)过通(Esej)过通(ESEJ)过通(ESEJ)过通(ESEJ),儿童(Mldomation Childron in Childron)(Mldstrantic tryprophy)(Mldstrymlatimation)(Mld)。1 lenmeldy作为一次性(每生)单剂量通过静脉输注给出。1最低建议的lenmeldy剂量基于MLD疾病亚型,为4.2 x 10 6分化34+(CD34+)细胞/kg,9 x 10 6 cd34+细胞/kg和6.6 x 10 6 x 10 6 CD34+细胞/kg患者的PSLI,PSEJ,PSEJ,PSEJ和ESEJ MLD相应地相应地相应;所有疾病亚型的最大建议剂量为30 x 10 6 CD34+细胞/kg。整个治疗过程涉及多个步骤。lenmeldy是根据儿童自己的HSC制备的,这些HSC是通过动员和放置程序收集的。此过程需要一天或多天才能收集足够数量的干细胞来制造Lenmeldy。收集的干细胞被发送到制造部位,用于制造Lenmeldy;这需要5到6周。在收到Lenmeldy之前,在合格的治疗中心进行了几天的化学疗法(与Busulfan),以准备骨髓以接受新细胞。完成骨髓性调节后,在输注Lenmeldy之前必须至少进行24小时的冲洗。在输注Lenmeldy后,该儿童在合格的治疗中心保持了4至12周的时间来监测恢复。用编码人类芳基硫酸酶A(ARSA)基因的慢病毒载体转导基因疗法。代理将ARSA基因的功能副本添加到孩子自己的HSC中。在患有PSLI,PSEJ和ESEJ MLD的儿童中已经建立了Lenmeldy的安全性和有效性。1涉及Lenmeldy治疗的20名PSLI儿童,7个患有PSEJ的儿童和10名ESEJ MLD儿童的临床试验;儿童的年龄在8个月和19个月之间(中位数12个月),11个月至5.56岁(中位年龄为2.57岁)和2.54岁至11.64岁(中位年龄为5.84岁)。尚未在患有该疾病晚期的儿童中确定Lenmeldy的安全性和功效。疾病概述MLD是由于ARSA基因突变引起的罕见的,遗传性的,常染色体隐性的,神经退行性的溶酶体储存疾病。2-4 MLD估计会影响美国每40,000个人中的一个。 MLD患者的ARSA活性降低(通常2-4 MLD估计会影响美国每40,000个人中的一个。MLD患者的ARSA活性降低(通常
警告: • 严重肝功能不全(Child-Pugh C)患者需要减少起始剂量并更频繁地监测 AST/ALT 2,3 • 在开始治疗前应充分控制已有的高血压 2,3 • 可能需要减少 selpercatinib 剂量以应对涉及 CYP 3A4 代谢途径的药物相互作用 2,3 • 据报道 QTc 延长;在治疗前纠正电解质异常并监测已知风险因素患者的心电图和电解质 2,3 • selpercatinib 与伤口愈合受损和出血有关;接受外科手术的患者可能需要停止使用 selpercatinib 2,3 • 肿瘤负担高、肿瘤快速生长、肾功能不全或脱水的患者可能会增加肿瘤溶解综合征的风险 2 特殊人群:如果使用 selpercatinib 治疗,生长板开放的儿科患者可能会增加生长迟缓的风险。在幼年动物研究中,观察到骨骺生长板肥大、股骨长度减少、骨矿物质密度降低和牙齿异常(例如牙齿发育不良、牙齿变色和错颌畸形)。有些影响是不可逆的。监测开放生长板患者的生长板异常。2 致癌性:尚未进行致癌性研究。2,3 致突变性:在 Ames 试验中无致突变性。Selpercatinib 在哺乳动物体内染色体试验中具有致染色体断裂作用,但在哺乳动物体外染色体试验中无致染色体断裂作用。2,3 生育力:在动物研究中,雄性受试者在暴露量低于人类临床暴露量时表现出睾丸退化、附睾腔内精子减少、剂量依赖性睾丸生殖细胞耗竭和精子细胞滞留。在暴露量约为预期人类临床暴露量的两倍时观察到精子形态的改变。当未成年雄性受试者后来在青春期与未经治疗的雌性交配时,生殖能力也会受到影响。观察到的影响包括:雄性生育力和交配指数降低、着床前和着床后损失增加、可存活胚胎减少。在雌性受试者中,发情周期数减少,可存活胚胎减少,着床后损失增加,暴露程度与人类临床暴露后相似。据报道,暴露程度低于人类临床暴露后,黄体减少或缺失,以及黄体囊肿存在。2,3 Selpercatinib 可能会损害有生育能力的男性和女性的生育能力。2 怀孕:在动物研究中,selpercatinib 具有致畸性并导致胚胎胎儿毒性。在类似或更高的暴露水平下,观察到结构畸形、早期吸收、胎儿体重下降、着床后损失增加和存活胎儿减少。比人类临床暴露后观察到的要多。2 建议在开始治疗前对有生育能力的女性患者进行妊娠测试。建议在治疗期间以及最后一次服用 selpercatinib 后至少 2 周内对有生育能力的女性患者和有生育能力的女性伴侣的男性患者进行避孕。2 由于可能分泌到乳汁中,因此不建议母乳喂养。女性在治疗期间以及最后一次服用 selpercatinib 后 2 周内不应母乳喂养。2
自 1967 年以来,康涅狄格河的美洲西鲱种群一直由流域州和联邦渔业机构合作管理。同年,为响应美国国会通过的《1965 年溯河洄游鱼类保护法案》(公法 89-304),成立了“康涅狄格河流域渔业管理政策委员会”。该委员会被更正式的“康涅狄格河大西洋鲑鱼委员会”(CRASC)取代,后者于 1983 年根据国会法案(PL 98-138)成立(Gephard 和 McMenemy 2004),负责协调美洲西鲱的恢复和管理活动( http://www.fws.gov/r5crc/ )。CRASC 美洲西鲱管理计划的既定目标是每年有 150 万至 200 万条鱼进入河口(CRASC 1992)。流域州和联邦鱼类和野生动物机构的各种立法权力,包括恢复和管理美洲西鲱的正式协议,已随着时间的推移获得批准,并列在附录 A 中。以下计划更新了现有的康涅狄格河流域美洲西鲱 CRASC 管理计划(1992 年),以反映当前的恢复和管理优先事项和新信息。附录 B 提供了美洲西鲱生活史和生物学的概述。1966-2015 年期间,成年西鲱返回河口的年估计数量在 226,000 到 1,628,000 之间,年平均为 638,504 条鱼(附录 C)。自 1955 年在霍利奥克大坝建造第一座现代升鱼机以来,进入历史栖息地的途径有所增加,1976 年和 2004 年重建升鱼机后,通道得到了显著改善。自 1980 年以来,由于恩菲尔德大坝的恶化以及在三座主干坝和四座支流坝修建鱼道,进入其他栖息地的途径有所增加。佛蒙特州的贝洛斯瀑布(河流公里 280 公里)已被确定为该物种在主干河流上的历史分布范围,但 1984 年建成的一条鱼道使大西洋鲑鱼能够从该屏障上游通过,现在允许鲱鱼迁徙到大坝以外(图 1;附录 D 和 E)。随着主干坝鱼道的安装,每年鲱鱼洄游的规模从 1967 年到 1992 年有所增加,但从 1992 年开始,其种群数量经历了急剧而出乎意料的下降(Crecco 和 Savoy 2004 年)。 2012-2016 年,霍利奥克捕获的鲱鱼数量有所恢复,因为最近几年,每年的年平均捕获量都超过了 1976-2011 年的平均年捕获量(附录 E)。根据大西洋州海洋渔业委员会 (ASMFC) 的美洲鲱鱼基准库存评估 (ASMFC 2007),目前康涅狄格河美洲鲱鱼种群被认为是稳定的,但丰度水平有所下降。在康涅狄格河,鱼道通过计数(附录 E)是帮助确定成年鲱鱼丰度和随时间变化趋势的重要指标,尽管许多因素都会影响鱼类的通过率和年内及年际数量。其他长期种群监测信息包括康涅狄格州能源与环境部 (CTDEEP) 开展的霍利奥克鱼梯和下游地区的种群结构数据(例如年龄、产卵历史)以及幼年鲱鱼围网调查(附录 F 和 G)。CTDEEP 汇编的其他长期监测数据包括下游商业刺网渔业的上岸量和努力量数据(附录 G)。从 2013 年开始,州政府进行商业(仅限河内)和/或休闲捕捞美洲鲱鱼需要获得大西洋州海洋渔业委员会批准的可持续渔业管理计划(ASMFC 2010 年《鲱鱼和河鲱州际渔业管理计划》第 3 号修正案)。随后,康涅狄格州制定了 ASMFC 批准的可持续渔业管理计划(2012 年),维持了其商业和休闲渔业,并进行捕捞。马萨诸塞州还获准维持允许捕捞的休闲渔业(MADMF 2012)。新罕布什尔州选择不制定可持续发展计划,因此其渔业仅限于捕捞和放生。佛蒙特州不是 ASMFC 的成员,可以自由维持休闲渔业而无需制定可持续发展计划,但遵守了新罕布什尔州的规定。
世界小动物兽医协会 (WSAVA) 疫苗接种指南小组 (VGG) 成立的目的是制定犬猫疫苗接种指南,旨在帮助全球兽医。之前的指南发表于 2007 年、2010 年和 2016 年,在同行评审的科学文献中被引用了数百次,下载了数万次。本文件是这些指南的更新版本。VGG 认识到其建议必须广泛且基于基本的免疫学原理,因为关于犬猫疫苗和疫苗接种的详细建议可能适用于某些国家或地区,但在其他地方可能不太适用。指南旨在为兽医的决策提供广泛的指导。它们不描述强制性或最低护理标准。国家和地区兽医协会以及个体兽医或兽医诊所可以使用这些指南制定适合自己当地情况的疫苗接种计划。尽管如此,VGG 强烈建议所有狗和猫都接种疫苗。这不仅可以保护单个动物,还可以提高“群体免疫力”,帮助最大限度地降低传染病爆发的风险。考虑到这一背景,VGG 将核心疫苗定义为所有狗和猫都应接种的疫苗,考虑到它们的生活方式和居住或旅行的地理区域。一些核心疫苗可以保护动物免受全球分布的潜在危及生命的疾病的侵害,而另一些核心疫苗可以保护动物免受仅在特定国家或地区流行的危及生命的疾病的侵害。世界各地的狗的核心疫苗是预防犬瘟热病毒 (CDV)、犬腺病毒 1 型 (CAV) 和犬细小病毒 2 型 (CPV) 的疫苗。世界各地的猫的核心疫苗是预防猫细小病毒 (FPV)、猫杯状病毒 (FCV) 和猫疱疹病毒 1 型 (FHV) 的疫苗。在世界狂犬病流行的地区,即使没有法律要求,接种狂犬病毒疫苗也应被视为对狗和猫必不可少的(即狂犬病疫苗在这些地方是核心疫苗)。犬钩端螺旋体病是另一种危及生命的人畜共患疾病,广泛分布于世界各地。在犬钩端螺旋体病流行的国家或地区,如果已知相关血清群并且有合适的疫苗可用,则强烈建议对所有犬只接种钩端螺旋体病疫苗,并且这些疫苗应被视为这些地方的核心疫苗。在世界许多地方,猫白血病病毒 (FeLV) 相关疾病是地方性的。在这些地方,FeLV 疫苗应被视为幼猫(<1 岁)和可以外出或与其他可以外出的猫一起生活的成年猫的核心疫苗。VGG 认识到母源抗体 (MDA) 会严重干扰目前大多数幼猫在幼年时期接种的核心疫苗的效力(幼猫可预防 CDV、CAV 和 CPV,幼猫可预防 FPV、FCV 和 FHV)。由于 MDA 水平在窝内和窝间差异很大,VGG 建议每 2 至 4 周给幼猫接种多剂核心疫苗,最后一次接种应在幼猫 16 周龄或以上时进行。在幼猫只能接种一次疫苗的情况下(例如,在成本受限的情况下),应在幼猫 16 周龄以上时接种核心疫苗。建议在 26 周龄或之后重新接种疫苗(而不是等到 12 至 16 个月大),以便及时为少数在 16 周以上接种疫苗时可能仍存在干扰性 MDA 的动物进行免疫接种。VGG 支持从 20 周龄开始使用血清学检测来检测接种疫苗后的血清转化(犬血清转化为 CDV、CAV 和 CPV,猫血清转化为 FPV)。这有助于确认幼年和成年动物的主动免疫保护,有助于优化成年动物的重新接种间隔,在某些情况下,有助于管理收容所中的传染病爆发。疫苗不应不必要地接种。成年动物的核心疫苗接种频率不应超过必要频率。有大量经过同行评审的已发表证据表明,大多数现代改良活病毒 (MLV) 核心疫苗提供的免疫持续时间 (DOI) 为多年。 VGG 将非核心疫苗定义为那些应该强烈推荐给那些由于地理位置和/或生活方式(如室内外活动、家庭中有多只宠物)而有可能感染非核心感染的动物的疫苗。兽医需要与宠物主人进行仔细的沟通,以决定向每位患者推荐哪些非核心疫苗。VGG 将某些疫苗列为不推荐疫苗,因为没有足够的科学证据证明可以在任何地方推荐使用这些疫苗。VGG 没有考虑一些在特定地理区域可用性或适用性非常有限的“次要”疫苗产品。VGG 强烈建议兽医教育客户定期健康检查(通常每年一次,有时更频繁)的价值,而不是谈论“疫苗接种咨询”。年度健康检查不仅仅是一次疫苗接种咨询,尽管它通常包括接种需要每年接种的选定疫苗。大多数非核心疫苗的 DOI 约为 1 年。还鼓励兽医在宠物健康检查前和检查期间接受培训,以改善宠物、主人和兽医人员的体验。Free Fear 培训计划 ( https://fearfreepets.com/fear-free-certification-overview/ ) 和 Cat Friendly 证书计划 ( https://catvets.com/cfp/cat-friendly-certificate-program/ ) 就是例子。VGG 考虑在收容所和庇护所中使用疫苗,再次认识到其中一些设施运营的财务限制。VGG 最低收容所指南规定,进入此类机构的所有狗和猫都应在进入之前或进入时接种核心 MLV 疫苗。在财务允许的情况下,这些机构