1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。 巨摩尔。 化学。 物理。 ,2023,224,2300122。 2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。巨摩尔。化学。物理。,2023,224,2300122。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。中文J. Polym。SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。,2018,36(4),445-461。3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。评论。compos。A部分appl。SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。制造。,2015,73,204-231。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。碳,2021,173,1020-1040。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。Nanoscale,2016,8(26),12977-12989。6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。6 Yu,L。M。; Huang,H。X.使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。聚合物,2022,247,124791。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。polym。测试。,2023,124,108068。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。 ACS Nano,2022,16(2),1734-1758。 9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。ACS Nano,2022,16(2),1734-1758。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。compos。SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。技术。,2019,181,107710。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。巨摩尔。mater。eng。,2020,305,2000343。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。J.胶体界面科学。,2022,606,223-235。12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。compos。A部分appl。SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。制造。,2023,168,107486。13陈梦杰,李志健,周宏伟,刘汉斌。细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。高分子学报,2023,54(11),1740-1752。14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。高分子学报,2022,53(6),617-625。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。 acs appl。 mater。 接口,2022,14(13),15504-15516。 16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。acs appl。mater。接口,2022,14(13),15504-15516。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。ACS Nano,2021,15(6),9690-9700。17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。17 Su,F。C。; Huang,H。X.具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。acs appl。mater。接口,2023,15(48),56328-56336。18田信龙,黄汉雄。具有较高回弹性的poe基微孔复合材料的传感性能。高分子学报,2023,54(2),235-244。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年1月21日发布。 https://doi.org/10.1101/2025.01.20.633932 doi:biorxiv Preprint
迄今为止,简单二元材料类中的铁电性 (FE) 已引起人们对其多功能应用的极大兴趣。具体而言,利用第一性原理密度泛函计算预测了岩盐氧化物中的 FE 有序性 [1]。参考文献 [2] 指出,利用外延应变确实可以在铁磁岩盐 EuO 中诱导铁电性,从而使其具有多铁性 [3]。实验上,可以通过合适基底上的晶格失配、拉伸薄膜或通过化学掺杂剂来调整应变 [4,5]。外部应变已被用于诱导新型金属-绝缘体转变 [6] 和层状氧化物中的极性-非极性转变 [7]。此外,在 c 方向施加正应变时,电场可以在最初中心对称的氧非化学计量氧化物 Gd 掺杂 CeO 2-x 中诱导化学膨胀和高压电性 [8]。
航空业存在严重的供应链问题。飞机和发动机的生产延误自大流行以来一直持续下去,迄今为止,在十年结束之前没有减轻真正的迹象。航空公司和出租人都在努力准时运送飞机,这对航空经济周期产生了重大影响。几乎每个制造业中提出的相同问题都基于类似的因素:劳动力短缺,原材料稀缺,能源成本上升,通货膨胀,运输和物流限制以及由地缘政治因素造成的破坏。自从大流行以来,所有这些压力点已经席卷了世界经济,乌克兰和中东的战争加剧或肯定会加长。机身和发动机制造商以及组件和零件供应商都面临着严重的供应链中断和延误,这导致了新飞机的交付延迟。在2024年在飞机供应链中添加工业行动和监管限制。“我们正在努力准时购买飞机,” Avolon首席执行官Andy Cronin说。“双方的制造商都有延误,这是由于上游供应链挑战的重大挑战所致。” 2024年初,空中客车首席执行官Guillaume Faury称供应链为“瓶颈世界”,并且该公司“与我们拥有供应商一样多的情况”。这些瓶颈包括原材料的供应 - 特别是钢和钛) - 组件和发动机。空中客车在7月的半年指导中再次重申了这些问题,该公司表示,商业飞机部门正面临“持续存在的特定供应链问题,主要是在发动机,航空机构和机舱设备中”。因此,空中客车公司修改了其A320的升级轨迹,到2027年以每月75 A320家族飞机的生产率为目标。空中客车在精神气氛(精神)时遇到了进一步的问题 -
单条聚合物链的热导率是合理设计聚合物基热管理材料的重要因素,而链的应变状态对其影响很大。在本研究中,利用非平衡分子动力学模拟,计算了代表典型聚合物链的单条聚乙烯链的热导率与应变的关系。为了研究不同共价键模型的影响,分别比较了反应性和非反应性势模型(AIREBO 和 NERD 势)的结果。当应变 ε 小到 ε < − 0.03 时,即在轻微压缩下,无论采用哪种势模型,热导率值都相似,且随应变的增加而增加。然而,当应变较大(最高 ε < 0.15)时,这两种势模型表现出截然不同的行为:由非反应性势计算的热导率随应变的增加而不断增长,而由反应性势模型计算的热导率则达到饱和。内部应力和振动态密度的分析表明,饱和行为是由于 C-C 键伸长时共价键力减弱所致,因此反应模型的结果可能更为真实。然而,当 ε > 0.1 时,由于开关函数的影响,反应势也产生了非物理结果,描述了共价键的形成和断裂。目前的结果表明,在研究拉伸应变下的聚合物性能时,必须仔细选择势模型和变形范围。© 2022 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可 (http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0095975
所有HGI研究人员都积极参与与其特定专业知识有关的研讨会和会议。例如,汉娜·诺克(Hannah Noke)博士被邀请在贝尔法斯特皇后大学(Queen's University's University)担任有关技术人员在知识交流过程中的作用的备受瞩目的工作。托马斯·库根(Thomas Coogan)博士应邀在牛津大学的“所有企业家精神”上的圆桌会议上发表讲话。与此同时,克里斯·詹姆斯·卡特(Chris James Carter)博士通过社交媒体组织了关于建立学术个人品牌的ISBE会议。因其在中国的农村企业家精神和可持续农业方面的专业知识而受到认可,Bin Wu博士应邀请他在各种国际活动中介绍他的研究,包括芬兰,新加坡和美国的会议。
新发传染病是指在人类群体中新出现的传染病,可由任何人类免疫力较低或没有免疫力的传染性病原体引起,可导致不同严重程度的死亡和发病,并可导致持续的社区爆发或发展为大流行。2018年,世界卫生组织(世卫)也将病原体不明的传染病“疾病X”列入其重点疾病蓝图清单,因其具有公共卫生风险和流行潜力,并呼吁会员国尽可能加强对“疾病X”的准备和应对。 2. 过去二十年,香港曾遭受数种新型传染病的侵袭:1997 年的禽流感、2003 年的 SARS、2009 年的甲型流感(H1N1)大流行和 2019 年的新冠肺炎。为确保香港特别行政区政府(“香港特区政府”)具备预防、发现、定性及迅速、有效和协调地应对新型传染病威胁的核心能力,以降低死亡率和发病率,本文件列出了香港特区政府在发现可能对香港公共卫生造成重大影响的新型传染病时应采取的准备和应对计划(“该计划”)。虽然有时可能会出现新型传染病,但是否启动该计划取决于基于以下关键因素的全面风险评估——
心肌菌株可能表明心脏的临界障碍,可用于在症状和不可逆的心肌功能障碍发展之前为治疗提供信息。背景术语“应变”表示力下的尺寸或变形变化。在超声心动图中使用时,“应变”一词用于描述通过心脏周期缩短,增厚和延长心肌的大小。最常见的心肌应变度量是长轴中左心室(LV)的变形,称为全局纵向应变(GLS)。在收缩期间,心室心肌纤维从底部到顶点的移动缩短。gls用作全局LV功能的度量,并为每个LV段提供了定量的心肌变形分析。心肌菌株成像旨在检测具有保留LV射血分数的患者LV功能的亚临床变化,从而可以尽早检测到收缩功能障碍。由于应变成像可以比标准方法更早地识别LV功能障碍,因此在患者患有症状和不可逆的心肌功能障碍之前,这会提高预防心力衰竭的可能性和原发性预防。斑点跟踪超声心动图的潜在应用是冠状动脉疾病,缺血性心肌病,瓣膜心脏病,扩张心肌病,肥厚性心肌病,胁迫心肌病和化学疗法相关的心脏毒性。心肌菌株成像心肌菌株可以通过心脏磁共振成像(MRI),组织多普勒成像或斑点跟踪超声心动图(Ste)来测量。组织多普勒菌株成像自1990年代以来一直在使用,但其局限性包括角度依赖性和明显的噪声。2016年,Smiseth等人。报告说,目前最广泛使用的心肌菌株的方法是Ste。(1)在Ste中,由超声梁和心肌纤维之间的相互作用产生的天然声学标记形成干涉模式(斑点)。这些标记是稳定的,Ste在常规的二维超声图上分析了每个点(斑点)的空间位错(跟踪)。超声心动图是使用专用工作站上的特定声学跟踪软件处理的,并通过对心肌菌株的离线半小节分析进行处理。二维位移是通过搜索与图像处理算法的搜索来识别的,以跨两个帧进行类似模式。在跟踪框架到框架时,斑点的时空位移提供了有关心脏周期中心肌变形的信息。gls对每个LV段进行定量分析,该分析表示为百分比。除GLS外,Ste还允许评估LV旋转和扭转动力学。监管状况通过510(k)流程,美国食品药品监督管理局(FDA)已清除了许多图像分析系统。这些示例如表1所示。例如,Echolnsight软件系统(Epsilon Imaging)“能够生产和可视化2维(2D)组织运动测量(包括组织速度,应变,应变,应变率)和心脏结构测量信息,这些信息来自于在任何B模式下在任何B模式下在组织中跟踪示意区域的跟踪范围(包括有害的)图像的图像,
四元环在药物研发中越来越受欢迎,这促使合成化学界改进和重新发明旧策略来制作这些结构。最近,应变释放概念已被用于构建复杂的架构。然而,尽管有许多策略可用于获取小碳环衍生物,但氮杂环丁烷的合成仍未得到充分开发。在这里,我们报告了一种光催化自由基策略,用于从氮杂双环[1.1.0]丁烷中获取密集功能化的氮杂环丁烷。该方案使用有机光敏剂,该光敏剂通过不同类型的磺酰亚胺精细控制关键的能量转移过程。氮杂双环[1.1.0]丁烷通过自由基应变释放过程拦截自由基中间体,从而只需一步即可获得双功能化的氮杂环丁烷。该自由基过程是通过光谱和光学技术以及密度泛函理论计算的结合揭示的。通过合成各种氮杂环丁烷目标物(包括塞来昔布和萘普生的衍生物)证明了该方法的有效性和通用性。
本文重点介绍了微生物组在人类健康中的不断扩展的作用,这表明,由于测序和元基因组学的进步,科学理解的重大转移。曾经主要通过病原体的视角观察,现在将微生物组重新认识为人类生物学不可或缺的一部分,在消化,免疫功能和维生素产生中发挥关键作用。微生物革命将微生物群落改造为健康的重要因素。肠道菌群产生短链脂肪酸,支持肠道健康,免疫调节以及防止炎症性肠病,肥胖和糖尿病等疾病。营养不良或微生物失衡与这些疾病有关,为益生菌,益生元和粪便菌群跨种植园等疗法铺平了道路。本文探讨了个性化的微生物组靶向疗法和人工疗法,以在优化益生菌中的作用。此外,它讨论了肠道轴,其中微生物会影响情绪和认知。尽管面临监管挑战,但基于微生物组的疗法为个性化和高效的医疗保健解决方案提供了潜力。