全球脱碳的努力促进了发电系统以及工业和制造过程的大量创新。随着减少温室气体排放的紧迫性,将能源发电到更清洁和更可持续的实践成为必要。这种转变需要提高能源效率并将可再生能源整合到能源系统中。此外,对废热的恢复和价值的研究兴趣越来越大。在该领域的一项有希望的技术是有机兰金循环(ORC),它可以热力学地转化低级热源(例如工业过程中的废热,地热能,太阳能热能,生物量等)。本期特刊的关注主题包括但不限于以下内容: - 具有两相扩展系统的兽人(TFC,PE-
热再生氨基电池(TRABS)使用低温(t <100°C)热量提供相对于其他废热装置的固定能量和功率,具有较高的功率密度和效率。Trabs是废热设备中研究的活跃领域,但是目前,该系统的哪个方面几乎没有达成共识,即限制Trab性能以及最大程度的效率。在此使用实验和数值模型来检查Trab系统中电池和蒸馏柱对关键操作变量的敏感性,从而确立了实际限制并确定改善性能的焦点领域。电池电量对欧姆损失的敏感性比动力学和传质损失高八倍,而不论工作温度如何,并且在75°C下模拟的峰值功率密度为18.8 mW cm -2。理论能源效率限制的定义为一系列氨含量和操作压力,比以前的估计量高于以前的2-3次 - 3次 - 3次 - 3次 - 3次 - 3次。大气压柱的操作与亚气流压力相比使用了更多的废热。估计,对于天然燃气轮机的功率输出的每1%,电池的体积将占9.2 m 3,但是随着细胞电导率的实际改善,尺寸将降低到2.5 m 3。这项工作中介绍的结果将通过关注最小化欧姆损失并提供特定数据以使未来的TRABS的完整系统评估来帮助简化未来的发展。
脱碳的热量在全球向可持续能源转变中至关重要,并且废热液化带来了变革性的机会,尤其是在工业活动领域。因此,本研究研究了与非常规热源集成的区域供暖网络(DHN)的性能,特别是挖水和工业废物,旨在使人们对各种DHN配置的技术和环境含义有全面的了解。为此,已经开发并采用了一种精致的网络染色模拟模型来评估几种网络大小和热源组合的成本和性能,并针对英国巴恩斯利进行了案例研究。结果表明,大型网络的平均热效率约为87%。利用矿水的网络在11.6 - 11.9 p/kWh的范围内具有升级的热成本(LOCH);引入工业废物将其降低到10.6 - 10.7 p/kWh。此外,废热集成将所提供的热量的碳因子降低到0.05 kgco2/kWh。在案例研究网络所涵盖的地区从锅炉到区域供暖的过渡显示,降低边际排放量从44.76%到83.46%。这些网络实现经济生存能力的气价从8.6到8.8 p/kWh不等。总而言之,DHNS提出了,尤其是在用工业废热增强时,出现了作为Barnsley等领域的有前途的解决方案,以追求可持续的供暖。这些发现对于政策制定者和当地理事机构来说至关重要,因为英国可以满足其2050年净零野心。
有用废热回收的经济价值 我们从不同角度研究了 SGIP 中 CHP 技术的成本和收益:业主、公用事业、纳税人(全国范围内,在加州境内)和社会
铜生产商正在努力通过提高能源效率和减少排放来进一步减少碳足迹。铜生产脱碳是一项巨大的挑战,因此,Fit for 55 方案和 REDII 修订版必须建立正确的框架,以支持铜行业在未来十年的这些努力。在这方面,ECI 欢迎在修订后的第 23 条中承认工业过程中使用废热是将可再生能源纳入供暖和制冷主流的一项合格措施。为了支持铜生产商利用废热的努力,我们要求将第 23(4) 条扩大到也涵盖将余热转化为电力供自用作为一项合格行动。
在我们的环境中,大量的废热促使人们寻找收集热量的方法。作为一种可靠的供能方式,SiGe 几十年来一直用于太空任务中的热电发电机 (TEG)。最近,微型热电发电机 (µ TEG) 已被证明是一种利用日常废热为物联网 (IoT) 供能的有前途的方式。Si 纳米线和 SiGe 纳米线结合了主要的 CMOS 兼容性以及高电导率和低热导率性能,已成为 µ TEG 的候选材料。本综述全面介绍了 Si、SiGe 纳米线及其用于 µ TEG 的可能性。深入讨论了热电的基本原理、材料、结构、制造、测量和应用。
氢气是否也可用于建筑物、用于发电和供热设备,这个问题经常引起争论。其他技术,如热泵或利用废热供应的区域供热网络,可能是更高效、更便宜的解决方案。在新建的房屋隔热性能高(热需求低)的社区中,全电动解决方案似乎是最合理的解决方案。然而,问题是,考虑到大多数可再生能源的间歇性,以及大规模电加热和电动汽车,100% 电气化系统是否可行;该系统必须结合存储和灵活性,而且氢气也可能发挥作用。对于老房子和历史悠久的城市中心,特别是在没有废热源来为供热网络供电的地方,氢气等气候中性气体可能是一个好的解决方案。
结果和讨论微生物测试的完整和截短的140°C灭菌周期的微生物测试结果如表1所示。在每种情况下,在140°C的干热周期中的任何一个中,来自不锈钢载体的任何样品中均未发现生长,证明了全部消除。在不同日期,所有截短的运行均显示结果的一致性,增长为零。阴性对照没有显示生长(未显示结果),表明技术人员没有样品污染。阳性对照与测试样品相同,除了未放入孵化器中。由于所有灭菌周期都能够消除所有微生物,包括用于干热量灭菌的规定生物学指标孢子,因此恢复程序仅用于阳性对照。表2中为323 L模型提供的结果清楚地表明,恢复的所有正面对照至少为10 6 CFU/载体,因此成功满足了所有接受标准。表3中给出的232升模型中所示的结果表明,最重要的生物学指标(抗抗热孢子孢子芽孢杆菌)最少回收了10 6 CFU/载体。这些结果证明,140°C的灭菌程序至少达到6-7 log 10减少抗脂肪芽孢杆菌的抗热孢子,符合EUP和USP的干热量灭菌所需的灭菌标准。
非热血浆辅助甲烷热解已成为轻度条件下氢生产的一种有希望的方法,同时产生了有价值的碳材料。在此,我们开发了一个等离子化学动力学模型,以阐明与氢气解析涉及氢和固体碳(GA)反应器内的甲烷热解的潜在反应机制。开发了一个零维(0D)化学动力学模型,以模拟基于GA的甲烷热解过程中的血浆化学,并结合了涉及电子,激发物种,离子和重物的反应。该模型准确地预测了与实验数据一致的甲烷转化和产品选择性。观察到氢与甲烷转化率之间存在很强的相关性,主要是由反应CH 4 + H→CH 3 + H 2驱动,对氢的形成贡献44.2%,而甲烷耗竭的37.7%。电子与碳氢化合物的影响碰撞起着次要作用,占H 2形成的31.1%。这项工作提供了对GA辅助甲烷热解中固体碳形成机制的详细研究。大多数固体碳源于通过反应E + C 2 H 2→E + C 2 + H 2 /2H的电子撞击C 2 H 2的分离以及随后的C 2缩合。c 2自由基被突出显示为固体碳形成的主要因素,占总碳产量的95.0%,这可能是由于C 2 H 2中相对较低的C - H解离能。这项动力学研究提供了对H 2背后的机制和在GA辅助甲烷热解过程中的固体形成机制的全面理解。