图 2-1 哈祖斯飓风模型方法示意图..................................................................................................................... 2-3 图 2-2 哈祖斯飓风分析层次..................................................................................................................................... 2-6 图 4-1 平均风廓线......................................................................................................................................................... 4-4 图 4-2 所有 MBL 情况下 RMW 附近的水滴的平均和拟合对数廓线............................................................. 4-6 图 4-3 RMW 附近 10 米处海面阻力系数随平均风速的变化............................................................. 4-7 图 4-4 RMW 外情况的平均风廓线和拟合对数廓线............................................................................................. 4-8 图 4-5 RMW 外情况 10 米处海面阻力系数随平均风速的变化......................................................................... 4-9 图 4-6 10 – 30公里和 30 – 60 公里 RMW 情况..................................................................................................................................................... 4-10 图 4-7 回归模型、Kepert(2001)模型与观测到的边界层高度的比较......................................................................................................................... 4-13 图 4-8 10 至 30 公里和 30 至 60 公里 RMW 情况下 RMW 附近观测到的和建模的速度剖面......................................................................................................... 4-14 图 4-9 在 RMW 附近采集的投掷探空仪数据的建模风速与高度的平均误差......................................................................................... 4-14 图 4-10 RMW 附近 10 米处平均风速与边界层顶部平均风速的建模与观测比值比较......................................................................................................................... 4-16 图 4-11 投掷探空仪数据的建模风速与高度的平均误差在 RMW 区域外拍摄的照片 ............................................................................................................................................. 4-16 图 4-12 完全过渡的陆地平均风速(z 0 =0.03 米)与水面平均风速(z 0 =0.0013 米)与边界层高度的比值 ............................................................................. 4-18 图 4-13 ESDU 和修改后的 ESDU 风速过渡函数 ............................................................................................. 4-18 图 4-14 使用平板模型计算的朝向页面顶部移动的飓风的喷射强度 ............................................................................................................................................. 4-20 图 4-15 显示模拟和观测到的风速、表面气压和风向的示例图......................................................................................................................................... 4-22 图 4-16 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-23 图 4-17 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-24 图 4-18 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(结束)......................................................................................................................... 4-26 图 4-20 比较图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大地面峰值阵风风速示例比较 ............................................................................................................. 4-29 图 4-22 已消除的剖面示例 ......................................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例 ......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-37
优势 o PSR 不需要在飞机上安装或操作应答器,从而可以检测和管理未装备/故障的飞机或不合作的飞机 1 o 如果需要显示天气,可以提供天气通道输出。 o 非常适合机场地面监视 弱点 o PSR 不提供身份 o 不提供高度 2 o 位置基于斜距测量而不是真实距离(这给多雷达跟踪系统带来一些困难) o 经常会报告假目标(地面车辆、天气、鸟类等) o 在存在地面和天气杂波的情况下检测性能较差,特别是对于与雷达切向的飞行 o 与二次监视雷达 (SSR) 相比价格昂贵 o 更新率在 4 到 12 秒之间(比典型的多点定位或 ADS-B 长) o 长距离性能需要高发射机功率 - 带来干扰和环境问题 o 系统的安装和维护成本非常高 o 系统需要最佳位置,视野开阔,雷达可见的地面杂波最少 o 由于方位角分辨率性能差,无法分辨相同范围内相似位置的两架飞机。
对于这个项目,我们将第三空间的理念应用到大学校园。大学是学生生活中的关键时期。对于许多人来说,这通常意味着全日制住宿,尤其是弗吉尼亚理工大学的新生。因为在这个人生阶段,“工作”通常看起来像是一名全日制学生,“家”通常是指住在校园宿舍,所以大学校园拥有各种可以逃离、减压、联系和参与的地方就显得更加重要。上大学的过渡期可能很困难。这通常意味着第一次离开童年的家。新的压力源出现了,比如满足学业和社会期望。当学生们寻找自己的部落时,他们会更多地发现自己作为个体的特质。随着视野的开阔,他们的世界观甚至可能会发生变化。出于所有这些原因,校园应该寻找改善学生福祉的方法。我们的项目旨在探索第三空间作为在大学校园建设社区福利的一种方法。通过创建促进社区健康的安全环境,自然会增加尊重参与、相互学习、知识交流和协作。所有这些都会促进社区充满活力和更强的地方感。通过第三空间促进社区福祉
摘要。硝化作用控制了可生物利用氮的氧化状态。不同的化学自动微生物 - 主要是氨氧化的Ar- chaea(AOA)和二硝酸盐氧化细菌(NOB) - 调节海洋中硝酸盐的两个步骤,但要对其贡献的贡献量进行,但可以通过贡献量来指导,并通过贡献率进行了贡献。碳固定仍未解决。 使用具有硝化功能类型的机械性微生物生态系统模型,我们在深层氧化的开阔海洋中为AOA和NOB的控件提供了简单的表达式。 AOA和NOB的相对生物量产生,损失率和细胞配额控制其相对丰度,尽管我们不需要调用损失率的差异来解释观察到的相对丰度。 铵的供应,而不是AOA或NOB的特征,在稳态下控制相对相等的AM-MONIA和亚硝酸盐氧化速率。 单独使用AOA和NOB的相对屈服将其相对大量的碳固定速率设置在水柱中。 定量关系船与多个原位数据集一致。 在整体全球生态系统模型中,硝化作用是在各种海洋环境中动态出现的,由于某些环境中的物理运输和复杂的生态相互作用,氨和亚硝酸盐氧化及其相关的碳偶联速率被解耦。 然而,简单的表达式将全局模式捕获到第一阶。 模型不同的化学自动微生物 - 主要是氨氧化的Ar- chaea(AOA)和二硝酸盐氧化细菌(NOB) - 调节海洋中硝酸盐的两个步骤,但要对其贡献的贡献量进行,但可以通过贡献量来指导,并通过贡献率进行了贡献。碳固定仍未解决。使用具有硝化功能类型的机械性微生物生态系统模型,我们在深层氧化的开阔海洋中为AOA和NOB的控件提供了简单的表达式。AOA和NOB的相对生物量产生,损失率和细胞配额控制其相对丰度,尽管我们不需要调用损失率的差异来解释观察到的相对丰度。铵的供应,而不是AOA或NOB的特征,在稳态下控制相对相等的AM-MONIA和亚硝酸盐氧化速率。单独使用AOA和NOB的相对屈服将其相对大量的碳固定速率设置在水柱中。定量关系船与多个原位数据集一致。在整体全球生态系统模型中,硝化作用是在各种海洋环境中动态出现的,由于某些环境中的物理运输和复杂的生态相互作用,氨和亚硝酸盐氧化及其相关的碳偶联速率被解耦。然而,简单的表达式将全局模式捕获到第一阶。模型
事故 – 一架飞机或车辆与另一架飞机、车辆、人员或物体相撞,导致财产损失、人身伤害或死亡。 通道 – 位于机场空侧的车行道路,供 OAA、FAA 以及机场承租人和承包商使用。 机场交通管制塔 (ATCT) – 由相关机构运营,旨在促进空中交通的安全、有序和快速流动。 空侧 – 机场内支持飞机活动的区域。在 Eppley 机场,空侧是围栏内的所有土地,包括空中作业区和安全区。 停机坪或坡道 – 机场内划定的区域,用于停放飞机、装卸乘客或货物、加油或维修。有人看管 - 用于指代任何车辆时,指操作员未受损伤、视野开阔或距离车辆 25 英尺以内。陪同 - 陪同或监控无权进入安全区域、SIDA 或 AOA 的个人的活动。执行董事 - 由奥马哈机场管理局任命的直接监督机场管理和运营的人员。执行董事可以雇用和指定员工代表他颁布奥马哈机场管理局的政策。在这些规则和条例中,凡指定执行董事的,均指执行董事
摘要。北冰洋对太阳辐射的定向反射主要由两种主要表面类型形成:海冰(通常被雪覆盖)和开阔海洋(无冰)。在它们之间的过渡区,即边缘海冰区 (MIZ),表面反射特性由两种表面类型的反射率的混合决定。在 MIZ 上应用的检索方法需要考虑混合方向反射率;否则在 MIZ 上检索到的大气参数可能会出现不确定性。为了量化这些不确定性,需要分别测量 MIZ 的反射特性。因此,在本案例研究中,使用在无云条件下 20 分钟低空飞行期间用数字鱼眼镜头收集的机载测量值,推导出 MIZ 中非均匀表面(海冰和公海混合)的平均半球方向反射因子 (HDRF)。为此,开发了海冰掩模以将反射率测量值与海冰和公海分开,并推导出各个表面类型的单独 HDRF。将相应的结果与文献中的模拟和独立测量值进行了比较。结果表明,由于波浪衰减,MIZ 中的公海 HDRF 与均匀海洋表面不同。使用两种表面类型的单个 HDRF 和海冰分数,描述方向反射率的混合 HDRF
结果通过创新的生物技术将采矿业与农业联系起来,称为“生态生物世界”。这项技术以生态方式将废弃的采矿资源(来自开阔矿山的沙子,铸造砂砂)转化为生物螺旋体,以支持恢复土壤化学和特征,并刺激植物的生长和健康。在静态和渗透条件下测试了有机污染的使用的铸造砂的生态生物颗粒过程,以消除危险的有机化合物。根据对治疗八周后所有方法的分析,最终最有效的方法是模仿渗透条件下“堆异构生物渗入”的方法,其中将污染的污染降低到4.3 mg/l doc。基于乳酸杆菌和芽孢杆菌形式的天然微生物财团的活性,对样品的生态生物渗入,可将其用作生物兴奋剂/生物肥料的浸润物产生渗滤液。这种新一代的生物兴奋剂/生物肥料包含有益的细菌,有机酸以及来自非金属原料和废物的溶解的微元素和宏观元素。砂样品的量会影响有机酸的浓度,从而影响生物含量后的元素。开采的低级沙子和使用的原材料(例如铸造砂)代表了生物技术过程的输入材料,并最终再次成为土壤(地球)的一部分,从而对循环结束了对当地采矿业,循环和农业的积极影响。
摘要Canary/Iberia地区(CIR)是加那利河流上升流系统的一部分,以其沿海生产率和通过上升沿海沿海水域的近海运输而富含贫营养的开阔海洋而闻名。鉴于其重要的生态和社会经济重要性,必须评估气候变化对该领域的影响至关重要。因此,这项研究的目的是使用由RCP8.5方案下的地球系统模型MPI-ESM-LR驱动的高分辨率区域气候系统模型分析CIR上的气候变化信号。该建模系统介绍了一个区域大气模型,该模型与全球海洋模型相结合,并在CIR中提供了足够的水平分辨率,以检查上升流利的风和海洋分层的作用,这是将来的关键因素。CIR在RCP8.5场景下对气候变化的响应表现出明显的纬度和季节性变异性,海洋分层和风模式将扮演互补和竞争角色。海洋分层将从本世纪末从直布罗陀的海峡到朱比角增加,从而削弱了整年的沿海上升流。分层的增加与北大西洋表面层的清新有关。然而,风模式的修改将在冬季最南端的CIR最南端和夏季伊比利亚半岛北部的源水深变化中起主要作用。风模式的变化与冬季的亚速尔群岛的强化以及夏季的伊比利亚热较低的加深有关。
i. 近距离,如图 1 所示 ii. 中距离,如图 2 所示 iii. 远距离,如图 3 所示 伦敦哈罗区景观 1.3 哈罗地方规划中确定的受保护景观如图 4 所示。有两种景观源自哈罗,并延伸至伦敦布伦特区。它们是从伍德农场乡村公园看到的景观,以及从足球巷顶部看到的景观。这两种景观在延伸至布伦特区时都是“设置走廊”,而不是“限制景观”。设置走廊更能让人看到一般的景色,而且视野更开阔,而限制景观则旨在保护特定的景观。在哈罗的背景下,这可能与山顶哈罗圣玛丽教堂的景观有关。景观的合理性已在下文中概述。设置走廊景观对开发的敏感度远低于限制景观。受限的视野需要保持视线的直线不被遮挡,以保护视野设置,而设置走廊则采取更平衡的方法。从足球巷顶部看到的景色 1.4 这个景色是从伦敦首都环路步行路线的一部分拍摄的。由于前景,可以直接看到伦敦市中心。对这个景色的保护旨在保护伦敦的景色,因为温布利球场就在它南边。伦敦的高层建筑
基督教信仰对中脑激活系统的看法及其对泗水 6 至 12 岁儿童灵性的影响 印度尼西亚泗水康妮·劳丽娜福音神学院 电子邮件:elzconn@gmail.com 摘要 上帝创造了人类,使人类成为他创造的其他生物中最特别的。人类的智力由一个器官决定,这个器官虽然体积小,但却起着非常重要的作用,那就是大脑。知识和技术的进步鼓励科学家们尝试解开大脑的奥秘。许多研究集中于右脑和左脑,或平衡右脑和左脑。但近年来,有一家培训/自我发展机构表示,他们已经找到了一种平衡左右脑的方法,即通过激活中脑。这种中脑激活方法针对的是 5-15 岁的儿童,因为人们认为这个年龄段的儿童更容易通过电脑在很短的时间内被激活。本文写作所采用的方法是文献研究,其中包含与讨论主题相关的各种信息。除了使用文献资料外,写作还将辅以实地研究,使用检查表采访受访者。所采用的研究方法是定性和定量方法。定性方法获得有关受访者经历的数据。本文的目的是找出(了解)中脑激活系统是符合上帝的话语还是违背上帝的话语;开阔父母、会众甚至本文读者的视野,尤其是那些有孩子的读者,这样他们就可以更谨慎地为孩子选择培训。关键词:智力、智力、大脑、中脑波、催眠、儿童。介绍