*班级具有现有的配方外套**自推出以来,在新的市场审查下,多源品牌产品 ^产品将添加到配方中。此图表包含对不属于CVS Health和/或其分支机构之一的药品制造商的商标或注册商标的名称。列出的信息是截至2024年10月1日的最新信息,并且可能会更改。
†同等贡献 *相应的作者隶属关系:1个生物医学工程的人工智能部门,弗里德里希 - 亚历山大 - 大学 - 埃尔兰根 - 纽伦伯格;德国埃尔兰根。2信息工程和数学系,UniversitàDegliStudi di Siena;意大利锡耶纳。 3 Querschnittzentrum Rummelsberg,Krankenhaus Rummelsberg GmbH;德国Schwarzenbruck。 *通讯作者。 电子邮件:Alessandro.del.vecchio@fau.de,dprattichizzo@unisi.it摘要:恢复手功能是四项运动员的最高优先事项之一。 然而,对于运动完全脊髓损伤的个体,当前恢复基本手动运动仍然有限。 在这项研究中,我们提出了一种非侵入性神经学界面,该界面直接转化了较低的运动神经元活动,该活动曾经编码手的开口和闭合到超级机器人机器人的第六指中。 我们重新启用了三个患有慢性(> 8年)的人完全宫颈脊髓损伤,以抓住对日常生活重要的物体,具有控制手指屈曲和扩展的相同神经输入。 经过几分钟的培训,参与者直观地调节了电动机单元的排放活动,从而控制了手势和关闭。 然后使用这些电动机单元按比例地控制机器人第六指。 所有参与者成功执行了各种掌握任务,这些任务需要数字上的相当大的力量,例如,通过拧开帽子打开瓶子。 这可以显着改善瘫痪者的生活质量。2信息工程和数学系,UniversitàDegliStudi di Siena;意大利锡耶纳。3 Querschnittzentrum Rummelsberg,Krankenhaus Rummelsberg GmbH;德国Schwarzenbruck。*通讯作者。电子邮件:Alessandro.del.vecchio@fau.de,dprattichizzo@unisi.it摘要:恢复手功能是四项运动员的最高优先事项之一。然而,对于运动完全脊髓损伤的个体,当前恢复基本手动运动仍然有限。在这项研究中,我们提出了一种非侵入性神经学界面,该界面直接转化了较低的运动神经元活动,该活动曾经编码手的开口和闭合到超级机器人机器人的第六指中。我们重新启用了三个患有慢性(> 8年)的人完全宫颈脊髓损伤,以抓住对日常生活重要的物体,具有控制手指屈曲和扩展的相同神经输入。经过几分钟的培训,参与者直观地调节了电动机单元的排放活动,从而控制了手势和关闭。然后使用这些电动机单元按比例地控制机器人第六指。所有参与者成功执行了各种掌握任务,这些任务需要数字上的相当大的力量,例如,通过拧开帽子打开瓶子。这可以显着改善瘫痪者的生活质量。我们的发现提出了协助手部功能的变革性步骤,提供了直观且非侵入性的神经合法界面,而无需学习新的运动技能,因为参与者使用与受伤前相同的运动命令。主文本:简介恢复手功能的关键重点是脊柱α运动神经元的活性,这是神经肌肉系统的最后电动途径。众所周知,即使被归类为完整的脊髓损伤(SCI)的个体,也可能保留1-4损伤高于损伤水平上方和之下的一些较不幸的神经连接。在先前涉及具有运动SCI的个体(八个具有C5-C6损伤水平的参与者)的研究中,我们证明了使用高密度表面肌电图(HDSEMG)通过非侵入性神经界面进行任务调节的运动单位,从而实现了手指运动的解码2。所有参与者在特定的电动机单位和
摘要 人机交互中的一个主要问题是任务应该在人与自动化之间进行交换还是共享。这项工作展示了作者在过去 10 年中通过课堂辩论对这两种人机交互形式的反思,重点关注自动驾驶领域。与讲座一样,我们首先从历史角度调查自动化的六个缺陷开始:(1)丧失情境和模式意识,(2)技能退化,(3)不平衡的心理工作量,(4)行为适应,(5)误用,和(6)废用。接下来,其中一位作者解释了为什么他认为触觉共享控制可以弥补这些缺陷。接下来,另一位作者反驳了这些论点,认为交换控制是改善道路安全的最有希望的方法。本文以一个共同点结束,解释了共享控制和交易控制分别在中等和低环境复杂性下表现优于对方。
基于想象语音的异步脑机接口 (BCI) 是一种工具,它允许通过解码想象语音的 EEG 信号来控制外部设备或在用户需要时发出消息。为了正确实现这些类型的 BCI,我们必须能够从连续信号中检测出受试者何时开始想象单词。在本文中,提出了基于小波分解、经验模态分解、频率能量、分形维数和混沌理论特征的五种特征提取方法,以解决从连续 EEG 信号中检测想象词段的任务,作为基于想象语音的异步 BCI 的后续实现的初步研究。使用四个不同的分类器在三个数据集中测试了这些方法,获得的较高 F 1 分数分别为每个数据集的 0.73、0.79 和 0.68。这些结果有望建立一个自动分割想象词段以供后期分类的系统。
(包括性取向和性别认同/表达)是一种民权犯罪,遭受了相同类型的问责制,以及针对其他受保护类别的罪行,例如种族,国籍,颜色,宗教,宗教,年龄,作为残疾人,退伍军人的地位或遗传信息。如果您或您认识的人遭到骚扰或殴打,则鼓励您将其报告给均等机会和平权行动办公室的标题IX协调员,135 Park Building,801-581-8365,或学生院长办公室,270 Union Building,801-581-7066。有关支持和机密咨询,请联系学生健康中心,SSB 328,801-581-7776。向警方报告,请联系公共安全部,801-585-2677(COPS)。教师和学生责任。(http://regulation.utah.edu/academics/6-316.php)
摘要 —本文研究了带有异步传感器的配电网的状态估计问题,该配电网由具有多种采样和报告率的智能电表和相量测量单元 (PMU) 组成。我们考虑了两种独立的状态估计和跟踪场景,状态为电压或电流。利用这两组数据,我们研究了 (a) 完整数据(假设所有测量值均可用)和 (b) 有限数据(采用在线算法方法通过在可用时处理测量值来估计可能随时间变化的状态)下的估计。所提出的算法受到经典随机梯度下降 (SGD) 方法的启发,根据先前的估计和新获得的测量值更新状态。最后,我们通过 IEEE-37 测试网络上的数值模拟证明了估计和跟踪的有效性,同时还强调了以电流为状态的估计如何导致更快的收敛。
图 2:混合算法 [19](图 (a) 和 (b))和 ATiTA(P)(图 (c) 和 (d))的示意图。图 (a) 和 (c) 代表神经网络的观点,而 PU 的观点则显示在图 (b) 和 (d) 中。由于膜电位或强度的整合,所有地方的脉冲都用红色表示,突触传递事件用橙色表示,下一个脉冲的预测用绿色表示。对于 ATiTA(P),灰色也表示计算后丢弃的潜在脉冲。在 (a) 中,由于大小为 T com 的突触延迟,下一个大小为 T com 的容器中的神经元会接收脉冲,然后对其进行整合以计算膜电位。在 (b) 中,每个 PU 的计算都是按大小为 T com 的容器进行的,并且需要在每个 T com 进行同步。根据 PU 的数量,一些 PU 可能会等待其他 PU,而不会在每个线程上进行大量计算,因此它们的负载较低。在 (c) 中,对于 ATiTA(P),在网络级别使用离散事件方法:计算会跳转到下一个潜在尖峰。最小的尖峰被保留为实际的下一个尖峰。然后,仅对突触后神经元进行突触传递、相应强度的更新和下一个潜在尖峰的新计算。在 (d) 中,(c) 的不同操作按单个线程在单个 PU 上执行的连续操作的顺序排列,因此单个 PU 会随着时间的推移满负荷运行。请注意,两种算法(混合算法和 ATiTA(P))都具有时间精度,可以是经典的数值精度 10 15,从这个意义上讲,它们都计算连续时间。
摘要 — 生物大脑越来越多地被视为更高效计算形式的指南。最新的前沿考虑使用基于脉冲神经网络的神经形态处理器进行近传感器数据处理,以适应边缘计算设备严格的功率和资源预算。然而,在神经形态系统的设计中,人们普遍关注受大脑启发的计算和存储原语,这目前正在将一个根本瓶颈推到最前沿:芯片级通信。虽然通信架构(通常是片上网络)通常受到通用计算的启发,甚至借鉴了通用计算,但神经形态通信表现出独特的特征:它们由事件驱动的路由组成,在狭小的区域和功率预算内将少量信息路由到大量目的地。本文旨在实现受大脑启发的通信的片上网络设计的转折点,围绕成本效益高且强大的异步设计、短消息传递的架构专业化和基于树的多播的轻量级硬件支持相结合。经功能性脉冲神经网络流量验证,与用于边缘计算应用的真实多核神经形态处理器的最先进的 NoC 相比,所提出的 NoC 可节省 42% 至 71% 的能源。
☐是否(否(否),大学(包括部门,实验室等)或机构可能参与大规模杀伤性武器等(核,化学,化学,生物学,火箭,无人驾驶飞机)或传统武器或技术上的高级材料,零件,或用于这些使用的产品?您的大学(包括其部门,实验室等)或机构是否有可能参与大规模杀伤性武器(核武器,化学武器,生物武器,火箭,无人驾驶飞机),常规武器或任何技术先进的材料,零件或产品,用于开发这些武器?
① 参见王行愚 、 金晶 、 张宇等 :《 脑控 : 基于脑 — 机接口的人机融合控制 》, 载 《 自动化学报 》2013 年第 3 期 , 第 208-221 页 。
