与传统技术相比,热除冰和融雪方法在控制交通基础设施表面冬季状况方面具有多种优势。这些包括自动控制安全的表面条件、避免化学物质及其对环境的影响以及延长基础设施的使用寿命。水力传热系统可以利用夏季收集的太阳能和地热交换的季节性热能储存。将这些可再生资源与能源储存结合起来可以节省一次能源。2021 年 6 月,国际能源署 (IEA) 启动了一个项目,旨在利用地面热能源为交通基础设施的表面除冰。本文首次概述了项目目标和方法。© 2022 作者。由 ELSEVIER BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(https://creativecommons.org/licenses/by-nc-nd/4.0)由交通研究领域 (TRA) 会议科学委员会负责同行评审 关键词:除冰;融雪系统;地源;基础设施
脱颖而出的背景:免疫学因素是复发妊娠丧失(RPL)的主要原因(RPL)和诱导母亲耐受性的耐受性是对这种RPL原因的主要治疗方法,但是这种方法的效果是不确定的,需要多种剂量和/或干预措施。这项研究的目的是研究转化生长因子-β1(TGF-β1)的单一施用是否可以改善RPL小鼠的妊娠结局,以及通过TGF-β1驱动免疫耐受性分子吲哚氨基氨基氨基氨基氨酸2,3-二氧氧化物(IDO)的TGF-β1是否导致改善。材料和方法:在这项实验研究中,将40个RPL模型小鼠平均分为一个对照组,该对照组接受了0.01 m磷酸盐缓冲盐水(PBS)和一个治疗组,该治疗组通过尾静脉注射接收了含有2、20和200 ng/ml TGF-β1的PBS。在怀孕的13.5天后处死小鼠,并确定胚胎的探索率。使用蛋白质印迹和免疫组织化学技术在胎盘中检测到IDO,TGF-β1和TGF-β3的表达。结果:在RPL小鼠的胎盘组织中,IDO的表达与TGF-β1正相关(r = 0.591,p <0.001)。在所有治疗组中,胚胎吸收率显着低于对照组,并且在所有治疗组的胎盘组织中IDO的表达显着高于对照组。TGF-β1的表达从治疗组的2、20至200 ng/ml逐渐增加,外源性TGF-β1的浓度与治疗组中胎盘组织中TGF-β1的表达呈正相关(r = 0.372,p = 0.018)。结论:外源性TGF-β1改善了RPL小鼠的妊娠结局,并且可能的治疗性机械性是外源性TGF-β1诱导内源性TGF-β1和IDO的持续表达,这是由于相互诱导的另一个人的表达。该实验可以为RPL患者的未来治疗提供一个新的方向和想法。
A2660 DISPLAY PACK INC 1340 MONROE NW GRAND RAPIDS 49505 KENT Other A2677 AMERIKAM 1337 JUDD AVE SW GRAND RAPIDS 49509 KENT Other A2722 EXPERT COATING CO INC. 2855 MARLIN COURT NW GRAND RAPIDS 49534 KENT Other PTI A2725 GEAR RESEARCH INC 4329 EASTERN AVE GRAND RAPIDS 49508 KENT Other A2809 Mold Masters Company 1455 Imlay City Road Lapeer 48446 Lapeer其他PTI A2849 Wacker Chemical Corp 3301 Sutton Rd Adrian 49221 Lenawee Lenawee其他PTI A2851 Anderson Development Company
STFC(ISIS)获得了英国国际科学伙伴基金 2 的资助,以支持马来西亚使用 ISIS 直至 2026 年 3 月。该奖项将支付 ISIS 的光束时间费用,并将支持马来西亚研究人员前往 ISIS 进行实验的旅行、食宿费用。
SISONKE 4 – 常见问题 研究目的是什么? 该研究旨在评估异源 mRNA-1273(Moderna)加强针对任何 COVID-19 和严重 COVID-19(包括住院和死亡)的有效性,适用于参与 Sisonke 试验并接种单剂或两剂 Ad26.COV2.S(杨森、强生)COVID-19 疫苗作为主要疫苗接种的医护人员。此外,该研究旨在收集 SHERPA 研究参与者亚组中异源 mRNA-1273 加强针的更多安全性和免疫原性数据。 为什么要进行这项 3 期开放标签研究?免疫原性研究表明,异源 mRNA 疫苗加强策略可能会在接种 Ad26.COV2.S 和其他基于载体的疫苗的人群中引发更强的中和抗体反应。考虑到异源 mRNA 加强研究的良好安全性和免疫原性数据,Sisonke 4 (SHERPA) 研究为在南非医护人员中测试一剂或两剂 Ad26.COV2.S 后使用 Moderna mRNA-1273 疫苗进行 mRNA 加强提供了良好的机会。这些数据还将为南非监管机构 SAHPRA 提供使用 mRNA-1273 (Moderna) 进行异源加强的安全性和有效性的本地数据,以支持该疫苗在南非的潜在许可。异源疫苗和同源疫苗接种有何区别?过去 2 年,多种 COVID-19 疫苗得到迅速研发,例如强生 Ad26.COV2.S 载体疫苗和 mRNA-1273 Moderna 疫苗。在初步研究中,同一种疫苗接种于一人,例如 2 支辉瑞疫苗或 2 支阿斯利康疫苗。这称为同源疫苗接种。然而,一旦有更多疫苗上市,一些国家就开始提供所谓的异源疫苗接种计划,例如在欧洲和加拿大,一些人先接种阿斯利康疫苗,然后接种 Moderna 或辉瑞疫苗。对这些疫苗接种计划的监测表明,异源疫苗接种策略是安全的,并且可以与同源疫苗接种计划一样有效。加强剂量是多少?如何接种疫苗?mRNA-1273 疫苗将以 0.25 毫升悬浮液的单次 50 微克加强剂量进行接种。这是国际推荐的 mRNA-1273 Moderna 疫苗加强剂量。该疫苗已在研究中进行了评估,目前正作为加强疫苗接种给世界各地的许多人。研究疫苗通过注射方式接种在您的上臂。接种疫苗后,您将留在研究地点观察约 15 分钟。本研究中没有安慰剂,这意味着每个人都会接受加强疫苗接种。谁可以参加 SISONKE 4?已接种一剂或两剂强生 Ad26.COV2.S 疫苗并愿意接种 mRNA-1273 加强剂的医护人员。谁不能参加?如果您不是 Sisonke 参与者,或者您接种了除一剂或两剂 Ad26.CoV2.S 以外的任何 COVID-19 疫苗(例如,另一种 mRNA 加强剂,如辉瑞疫苗)。
同源疫苗意味着您正在用基于LSDV的疫苗接种牛,或绵羊/山羊和绵羊/山羊痘病毒的疫苗。异源意味着您使用的是基于绵羊的痘/山羊病毒疫苗来保护牛免受LSDV的侵害。为了清楚起见,我们将在这里参考疫苗中使用的病毒,而不是异源/同质派别。为了预防LSD和控制,LSD疫苗基于LSD病毒的Neethling-type菌株(同源疫苗);基于绵羊痘病毒(SPPV)或山羊痘病毒(GTPV)(异源疫苗)的疫苗可以用作LSD和Sheep Pox或山羊POX的国家,或者对于那些已经具有这些疫苗制造能力的国家。但是,如果选择用于牛的绵羊/山羊痘病毒疫苗,则应对疫苗产物进行良好的特征,调整剂量和疫苗提供的保护剂,应使用疫苗挑战试验评估。
Júliacorominas a,1,卡尔姆·加里加(Carme Garriga) U EB,MarçalGallemíB,Juli a Blanco B,C,D,E,Edwards Pradenas B,Benjamin Trinit trinit ́EB,D,Julia G. Prado B,D,D,E,E,RaúlPe B, Kimming F,Alex Soriano D,H,Jocelyn Nava H,Jesse Omar Anagua H,Rafel Ramos I,J,RuthMartíLluchI,J,Aida Corpes I,Xao,Xao,Xao,Suomer VierMartínez-Gomez-Gomez-Gomez-Gomez-Gomez-Gomez K, O,Alberto M. Borobia D,P,Q,Javier Queiruga Parada P,Q,Jorge,Jorge,Jorge,Jorge,Jorge,Jorge'r E Forrez Giner R,RafaelOrtíucasR,MaríaDelMar Mar Mar Mar Mar Mar V́ O T,Eunate Arana-Arri U,Susana Mejide U,Natale Imaz-ayo,Pacio,Garcia Villa V的女儿,Sara Rodriguez Fern ́ Andez V,Teresa Prat A,
摘要背景:通过生物化学转化从可再生生物质中获得的生物燃料和增值生物化学品已引起广泛关注,以满足全球可持续能源和环境目标。异丁醇是一种四碳醇,具有许多优点,使其成为有吸引力的化石燃料替代品。运动发酵单胞菌是一种高效的厌氧产乙醇细菌,使其成为生物精炼厂的有前途的工业平台。结果:在本研究中,研究了异丁醇对运动发酵单胞菌的影响,并构建了各种生产异丁醇的重组菌株。结果表明,运动发酵单胞菌亲本菌株能够在低于 12 g/L 的异丁醇存在下生长,而浓度高于 16 g/L 会抑制细胞生长。运动发酵单胞菌中异丁醇生产需要整合编码 2-酮异戊酸脱羧酶的异源基因,例如来自乳酸乳球菌的 kdcA。此外,在由四环素诱导启动子 Ptet 驱动的含有 kdcA 基因的重组菌株中,异丁醇产量从接近零提高到 100–150 mg/L。另外,我们确定在表达 kdcA 的重组 Z. mobilis 菌株中过表达异源 als 基因和两个参与缬氨酸代谢的天然基因( ilvC 和 ilvD )可将丙酮酸从乙醇生产转移到异丁醇生物合成。这一工程将异丁醇产量提高到 1 g/L 以上。最后,确定了含有由 Ptet 驱动的合成操纵子 als - ilvC - ilvD 和由组成型强启动子 Pgap 驱动的 kdcA 基因的重组菌株大大提高了异丁醇产量,最高滴度约为 4.0 g/L。最后,异丁醇生产受到通气的负面影响,通气较差的烧瓶中会产生更多的异丁醇。结论:这项研究表明,kdcA 与合成异源操纵子 als - ilvC - ilvD 的过度表达对于将丙酮酸从乙醇生产中转移出来以增强异丁醇的生物合成至关重要。此外,这项研究还提供了一种利用缬氨酸代谢途径在 Z. mobilis 中生产其他丙酮酸衍生生物化学物质的策略。关键词:Zymomonas mobilis、生物燃料、异丁醇、代谢工程、丙酮酸衍生生物化学物质、2-酮异戊酸脱羧酶 (Kdc)
楔形键合机使用超声波能量将金属线键合到金属基板上,整个过程仅需几毫秒。在大批量生产中,故障会导致停机和成本增加。在线监控系统用于减少故障并确定根本原因。我们开发并测试了一种算法来对超声波线键合生产中的异常值进行分类。该算法用于大型线楔形键合机,以测量和分析过程信号并检测和分类键合异常值。它可以帮助键合机操作员、生产主管和工艺工程师检测工艺偏差并解决潜在的根本原因。该算法测量键合信号,例如变形、超声波电流和超声波频率。根据键合顺序和工艺参数,键合会自动分为子组,然后对子组内的信号进行归一化。对于异常值分类,从归一化信号中提取特征并将其组合成故障类别值。污染、无线、高变形、线错位和基板不稳定等故障类别是独立计算的。我们测量了大型铝线键合故障类别的检测率,并演示了该算法如何根据信号计算故障类别值。此外,我们还展示了如何定义新的信号特征和故障类别来检测特定于生产或罕见的故障类别。关键词楔形键合机、超声波引线键合、异常值分类、键合故障、检测算法。