冠状病毒病(Covid-19)于2019年12月出现在中国,此后已蔓延到影响数百万个人的188多个国家。在大流行的最初几天出现了BCG疫苗对Covid-19授予的几项有利或反对异源保护的报告,并继续这样做。在这项研究中,我们比较了受影响最大的国家:美国,印度和巴西,当前的大流行情景及其各自的国家BCG免疫政策。美国仅向特定人群提供BCG疫苗,并且从未制定国家免疫计划。同时,印度早在1948年就引入了全国性计划,并继续在出生时认可BCG免疫。巴西一直使用口服途径来管理BCG疫苗,直到1976年,然后转移到皮内注射。相关系数的案件总数,案件,百万,死亡总数,每百万的死亡人数,案件死亡率范围范围范围范围。这表明没有国家免疫计划(USA)的各个国家的流行病学参数与BCG疫苗接种的国家政策严格的国家之间存在非常强大的正相关。美国和巴西之间存在最牢固的相关性,其次是巴西和印度,这是美国和印度紧随其后的。我们没有发现一致的证据来推断BCG提供了对COVID-19的任何非特异性保护的假设。
数学系,维也纳,维也纳,奥地利,奥地利b维也纳人口遗传学研究生院,维也纳,奥地利C c分子癌研究系,荷兰大学乌得勒支utrecht大学医学中心,荷兰utrecht,荷兰D数据综合数学肿瘤学系,H。
bcg(bacillus calmette -guérin); OPV(口服脊髓灰质炎疫苗); DTP-HEPB-HIB(百日咳白喉dipussis / hepatitis b / haemophilus haemophilus actionza); MMR(麻疹,腮腺炎和风疹疫苗); AAV(抗氨基疫苗); IPV(可注射脊髓灰质炎疫苗); TD(破伤风,白喉疫苗); TD2 +(TD2,TD3,TD4和TD5的累积)统计分析计划对用于疫苗接种的主要抗原的覆盖范围描述了
背景:CRISPR/Cas 和 TALEN 技术的进步激发了人们对植物基因编辑机会的兴奋。CRISPR/Cas 被广泛用于通过诱导靶向双链断裂 (DSB) 来敲除或修改基因,而双链断裂主要通过易出错的非同源末端连接或微同源介导的末端连接进行修复,从而导致可能改变或消除基因功能的突变。尽管此类突变是随机的,但它们发生的频率足以使有用的突变能够通过筛选定期识别。相比之下,用替代等位基因或具有特定特征修饰的拷贝替换整个基因的基因敲入目前还不常见。通过同源定向修复进行基因替换(或基因靶向)在高等植物中发生的频率极低,使得筛选有用事件变得不可行。通过抑制非同源末端连接和/或刺激同源重组 (HR) 可以增加同源定向修复。在这里,我们通过评估多种异源重组酶表达对烟草植物染色体内同源重组 (ICR) 的影响,为提高基因置换效率铺平了道路。结果:我们在含有高度敏感的 β -葡糖醛酸酶 (GUS) 型 ICR 底物的烟草转基因系中以不同的组合表达了几种细菌和人类重组酶。使用病毒 2A 翻译重编码系统实现了多种重组酶的协调同时表达。我们发现大多数重组酶在花粉中显著增加了 ICR,其中 HR 将由减数分裂期间发生的程序化 DSB 促进。DMC1 表达在初级转化体中产生了对 ICR 的最大刺激,其中一种植物的 ICR 频率增加了 1000 倍。对纯合 T2 植物系中的 ICR 的评估表明,ICR 增加了 2 倍到 380 倍,具体取决于表达的重组酶。相比之下,营养组织中的 ICR 仅适度增加,异源重组酶的组成性表达也降低了植物的育性。结论:异源重组酶的表达可以大大增加植物生殖组织中 HR 的频率。将此类重组酶表达与使用 CRISPR/Cas9 诱导 DSB 相结合可能是从根本上提高植物基因替换效率的途径。
摘要 2016 年,根据现行良好生产规范开发和生产了一种 SARS-CoV 受体结合域 (RBD) 重组蛋白。该蛋白在 Alhydrogel® 上配制时称为 RBD219-N1,在用 SARS-CoV(MA15 毒株)同源病毒攻击小鼠后,诱导出高水平中和抗体和保护性免疫,且免疫病理学极小。我们研究了已发表的证据,以支持 SARS-CoV RBD219-N1 是否可以重新用作针对冠状病毒传染病 (COVID)-19 的异源疫苗。我们的研究结果包括 SARS-CoV 患者恢复期血清可以中和 SARS-CoV-2 的证据。此外,对已发表的研究进行了回顾,这些研究使用针对 SARS-CoV RBD 产生的单克隆抗体 (mAb) 在体外中和 SARS-CoV 病毒,发现其中一些 mAb 与 RBD 内的受体结合基序 (RBM) 结合,而另一些 mAb 与 RBD 内该区域以外的域结合。这些信息具有相关性,并支持开发针对 COVID-19 的异源 SARS-CoV RBD 疫苗的可能性,特别是因为发现 SARS-CoV 和 SARS-CoV-2 刺突和 RBD 域之间的整体高氨基酸相似性 (82%) 并未反映在 RBM 氨基酸相似性 (59%) 中。然而,RBM 外区域的高序列相似性 (94%) 为两种病毒之间保守的中和表位提供了潜力。
摘要:2,3-二氢苯并呋喃和I ndolines是药物和天然产品中的常见子结构。在本文中,我们描述了一种可以从非偶联的烷基酰胺和邻苯二酚/苯酚中直接访问这些核心结构的方法。在钯(ii)催化下,这种[3+2]的杂型以抗选择方式进行,并容忍各种官能团。n-乙酰基, - 丁糖基和 - 烷基取代的Ortho -iodoanilines以及游离–NH 2变体都是有效的。与碳基耦合伙伴的初步结果还证明了使用这种方法形成差异核心结构的可行性。对苯酚反应的实验和计算研究支持一种涉及限制离职,内抗定向的氧化作用的机制,然后进行分子内氧化添加和还原性消除。
异源免疫 (HI) 是与特定抗原相遇的结果,它可以改变对不同抗原的后续免疫反应。这可能发生在先天免疫系统水平(通常称为训练免疫或先天免疫记忆)和/或涉及 T 记忆细胞和抗体的适应性免疫系统水平。病毒也可能诱导 T 细胞介导的 HI,这可以提供保护或驱动针对其他病毒亚型、相关或不相关病毒、其他病原体、自身或同种抗原的免疫病理学。重要的是要了解抗病毒“通用”疫苗和更广泛的 T 细胞反应(而不仅仅是流感情况下的亚型特异性抗体反应)的潜在机制。此外,有关疫苗介导的 HI 决定因素的知识可以为公共卫生政策提供信息,并为重新利用现有疫苗提供建议。在这里,我们介绍 HI,并概述病毒和抗病毒疫苗诱导的 T 细胞介导的交叉反应的证据。我们还讨论了影响病毒介导的 HI 最终临床结果的因素以及减毒抗病毒疫苗(如麻疹和牛痘)的非特异性有益作用。现有的流行病学和机制数据对新疫苗的开发和个性化疫苗学都有影响,本文将对此进行介绍。最后,我们制定了未来的研究重点和机会。
摘要 - 本文展示了一种下一代高性能3D包装技术,其外形较小,出色的电性能以及异质整合的可靠性。高密度逻辑记忆集成主要是使用插入器建造的,这些插入器从根本上受到限制的组装螺距和互连长度有限,并且随着包装尺寸的增加,它们也具有范围。另一方面,高频应用继续使用层压板,这些层压板也受到包装大小和集成许多组件的能力的限制。Wafer级风扇外(WLFO)包装承诺以较低的成本以较低的成本进行更好的表现和外形,但是当前的WLFO包装是基于模具的,因此仅限于小包装。本文提出了使用玻璃面板嵌入(GPE)的3D包装技术,以实现高性能,并具有大型体型异质整合应用的潜力。玻璃热膨胀的可量身定制系数允许大型GPE包装的可靠直接板连接,这不仅使外形速度和信号速度有益,而且还为动力传递提供了根本的好处。与插入器和硅桥不同,GPE软件包不是颠簸限制的,并且可以支持与后端的I/O密度,而硅状的重新分布接线则以较低的成本为单位。本文描述了3D GPE的制造过程,从而在40- m m i/o处使用芯片嵌入具有300- m m音高的TGV的芯片,从而导致技术的固定,从而启用双层RDL和芯片,以实现三个级别的设备集成。通过参数过程改进来解决当前有机WLFO包装等基本限制,以及较差的尺寸稳定性,以将模具转移降低到<2 m m,同时还可以改善3D包装的粉丝范围内的RDL表面平面性,以改善高产量的细线结构,并通过玻璃(TGV通过玻璃(TGV)集成)。
该出版物包括 21 项不同的攻毒研究,使用了遗传多样的异源 PRRS 分离株,结果发现与未接种疫苗的猪相比,接种 Ingelvac PRRS® MLV 和 Ingelvac PRRS® ATP 的猪的肺病变发生率显著降低(表 5)。4 这些发现进一步表明,病毒分离株之间的序列相似性不是预测交叉保护性免疫的可靠方法。9,10 此外,这些研究中使用的猪攻毒模型仍然是评估疫苗异源保护预期水平的黄金标准。
