平板扫描仪已成为高分辨率,单像材料捕获的有前途的设备。但是,现有方法假设非常具体的条件,例如均匀的弥散照明,仅在某些高端设备中可用,从而阻碍其可扩展性和成本。相比之下,在这项工作中,我们引入了一种受固有图像分解启发的方法,该方法可以准确地消除阴影和镜面性,从而有效地允许使用任何平板扫描仪捕获。此外,我们以不透明和透射率的估计,全材料外观(SVBSDF)的关键成分(SVBSDF)的估计来探讨了单位材料反射捕获的先前工作,以非常高的分辨率和准确性改善了用平板扫描仪捕获的任何材料的结果。©2025 Elsevier B.V.保留所有权利。
脑电图 (EEG) 和弥散光学断层扫描 (DOT) 是广泛用于神经成像的成像方法。虽然 EEG 的时间分辨率很高,但空间分辨率通常有限。另一方面,DOT 具有高空间分辨率,但时间分辨率本质上受到其测量的缓慢血液动力学的限制。在我们之前的工作中,我们使用计算机模拟表明,当使用 DOT 重建的结果作为 EEG 源重建的空间先验时,可以实现高时空分辨率。在这项工作中,我们通过以比 DOT 时间分辨率更快的速度交替闪烁两个视觉刺激来实验验证该算法。我们表明,使用 EEG 和 DOT 的联合重建可以清楚地在时间上解析这两个刺激,并且与单独使用 EEG 的重建相比,空间限制得到了显着改善。
多达四分之一的肝硬化或门脉高压症患者会出现这种情况。该综合征是由肺内血管扩张引起的,可细分为两种类型:1 型,导致弥散灌注缺陷;2 型,导致解剖分流。当血管收缩/增生后果占主导地位时,一小部分 (2-8%) 的肝硬化患者会出现门脉性肺动脉高压。其特点是,除非晚期肺动脉高压导致通过卵圆孔未闭的右向左分流,否则低氧血症的严重程度较轻。(3)由于与低 DL CO 相关的多种机制(图 1),尽管腹水量很大,但一些患者可能不会出现预期的肺实质外限制模式(即低 TLC 和超大一氧化碳转移系数)。
在线性和非线性工程材料中 [ 1 , 2 ]。例如,在复合材料中,弥散损伤之后是损伤局部化和裂纹形成,最终导致断裂。在准脆性材料或受到循环载荷的金属中,裂纹形成和扩展在损伤开始后迅速发生。初始或诱导各向异性在材料损伤中普遍存在,对建模和模拟提出了挑战,正如许多现有的各向异性损伤复杂公式所示 [ 3 ]。相比之下,文献中很少发现连续损伤方法对金属单晶的应用,这可能是由于特定的各向异性变形和损伤机制。[ 4 ] 解决了单晶镍基高温合金的蠕变损伤,而 [ 5 ] 中的作者提出了一个与晶体粘塑性耦合的各向异性损伤模型框架。[ 6 ] 使用粘结区模型模拟单晶裂纹沿预定义路径扩展
简介:课程概述。能源资源的分类,世界和印度基本的太阳 - 地球关系:定义。天体球,高度 - 齐路,偏斜角度和偏斜 - 右上角坐标系统,用于寻找太阳的位置,天体三角形和太阳的坐标。格林威治的平均时间,印度标准时间,当地太阳能时间,阳光升起和日光照射时间和日期。数值问题太阳辐射:太阳辐射的性质,太阳辐射谱,太阳常数,水平表面上的地球外辐射,太阳辐射的衰减,梁,弥散和全球辐射的衰减。全局,弥漫性和梁辐射的测量。太阳辐射的预测; Angstrom模型,页面模型,Hottel的模型,Liu和Jordan模型等。在倾斜的表面,入射角,说明性问题上的显影
为了应对全球变暖和能源问题,各个领域都在推动创新材料的研究和开发。在能源、核能、宇宙环境、放射医学、核聚变和加速器相关设备等领域,材料和设备会发生辐射退化,人们已经利用加工热处理、添加杂质、合金化、微晶化、纳米团簇、氧化物弥散强度 (ODS) 钢、复合材料和纳米纤维材料 [1-23] 等各种方法来提高机械性能、耐腐蚀性和抗辐照性,这些技术已经取得了成功的结果。Viswanathan [23] 根据结果总结了四代结构钢最高使用温度的历史改进速度。在许多情况下,设计高性能抗辐射材料的关键策略是基于引入高密度、均匀的纳米级粒子,这些粒子同时提供良好的高温强度和抗辐射损伤性。
摘要 目的 比较应用和关闭 (NON-DL) 的 AIR Recon Deep Learning™ (ARDL) 算法的肝脏 MRI 与传统高分辨率采集 (NAÏVE) 序列在定量和定性图像分析和扫描时间方面的差异。材料与方法这项前瞻性研究包括 2021 年 9 月至 11 月期间的 50 名连续志愿者(31 名女性,平均年龄 55.5 ± 20 岁)。进行 1.5 T MRI 检查并包括三组图像:使用 ARDL 和 NAÏVE 协议获取的轴向单次激发快速自旋回波 (SSFSE) T2 图像、弥散加权图像 (DWI) 和表观弥散系数 (ADC) 图;还评估了 NON-DL 图像。两名放射科医生一致在肝实质中绘制固定的感兴趣区域以计算信噪比 (SNR) 和对比噪声比 (CNR)。另外两名放射科医生使用五点李克特量表独立评估主观图像质量。记录采集时间。结果 SSFSE T2 客观分析显示 ARDL vs NAÏVE 和 ARDL vs NON-DL 的 SNR 和 CNR 较高(所有 P < 0.013)。对于 DWI,ARDL vs NAÏVE 和 ARDL vs NON-DL 的 SNR 没有差异(所有 P > 0.2517)。ARDL vs NON-DL 的 CNR 较高(P = 0.0170),而 ARDL 和 NAÏVE 之间没有差异(P = 1)。在 ADC 图的 SNR 和 CNR 方面,三种比较均无差异(所有 P > 0.32)。所有序列的定性分析显示 ARDL 的整体图像质量更好,截断伪影更少,清晰度和对比度更高(所有 P < 0.0070),且具有出色的评分者间一致性(k ≥ 0.8143)。 ARDL 序列的采集时间比 NAÏVE 短 (SSFSE T2 = 19.08 ± 2.5 s vs. 24.1 ± 2 s 和 DWI = 207.3 ± 54 s vs. 513.6 ± 98.6 s,所有 P < 0.0001)。结论 ARDL 应用于上腹部与 NAÏVE 协议相比,整体图像质量更好,扫描时间更短。
30.1 理论宇宙射线 (CR) 是遍布宇宙的非热粒子群。它们的显著特征可以从其主要的观测特性中推断出来:光谱、成分和到达方向。对于带电 CR,能量从几十 MeV 到接近 1 ZeV,强度在 1 GeV 以上为 ∼ 104 m − 2 s − 1 sr − 1,但差分谱随能量 E 急剧下降,遵循幂律依赖性 E − γ。最显著的光谱特征是在几个 PeV 处的“膝盖”,其中谱指数 γ 从 ∼ 2.7 变为 ∼ 3,“第二个膝盖”在 ∼ 100 PeV 处变为 ∼ 3.3 和在几个 EeV 处的“脚踝”,γ 变为 ∼ 2。 5. 通量在几十 EeV 以上被大大抑制。(有关光谱特征的更详细讨论可参见下文第 30.2.1 和 30.2.2 节。)带电 CR 主要由质子、氦和其他原子核以及电子、正电子和反质子组成。到达方向大多是各向同性的,但在膝点以下和周围,由于源的分布和银河系磁场的特性,观察到有趣的 O(10-4...10-3)各向异性,在最高能量下达到 ∼O(10-1)。伽马射线可分解为来自天体物理源的伽马射线(50 MeV 以上约 6660 [ 1 ],TeV 能量下约 300 [ 2 , 3 ]),以及来自银河系和河外星系的弥散通量,主要表现出对能量的幂律依赖性。高能中微子的观测打开了一扇新的窗户;虽然分布基本上是各向同性的,但已经发现了两个河外星系源以及来自银河系平面的贡献的证据。带电 CR、弥散伽马射线和中微子的能谱如图 30.1 所示。对带电宇宙射线、伽马射线和中微子以及引力波的综合观测(见第 21.2.3 节)为我们了解最极端的天体物理环境提供了有价值的见解,这被称为多信使天体物理学。将所有物种的贡献相加,可得到全粒子谱。虽然长期以来人们认为它是一个没有特征的幂律,直到几个 PeV 的膝盖,但现在人们认识到它具有更多的结构,反映了各个物种的特征。这些特征包含有关宇宙射线加速和传输的重要信息。使用的能量变量是动能 E,即每个核子的动能,对于质量数为 A 的粒子,E n = E/A,或对于电荷数为 Z 的粒子,刚度 R ≡ pc/ ( Ze )(以伏特为单位),p 是粒子的动量;术语“刚度”是指在磁场 B 中抵抗偏转的能力:刚度低(高)的粒子具有小(大)的回旋半径 rg = R /B 。动能与量热仪器的实验特征密切相关,而刚度则是光谱仪器最自然的特征。还要注意,相对论性原子核的能量损失很小,它们的传输由磁场决定,因此它只取决于刚度。核子强度 J 也称为弥散通量,是通过能量在区间 [ E, E + d E ] 内的粒子的微分数 d N 来定义的,这些粒子在时间 dt 内从立体角 d Ω 穿过面积 d A:d N = J d E d A d Ω dt 。其各向同性部分与微分密度 ψ = (4 π/v ) J 有关,v 为粒子速度,与相空间密度 f 有关,即 J = p 2 f 。注意,强度也可以根据每个核子的粒子能量或刚度来定义。为了强调这一点,强度通常写为 d J/ d E 、d J/ d En 或 d J/ d R 。在探测 CR 方面,有两类技术 [ 4 ]。直接观测(见第 30.2.1 节)利用粒子物理探测器(例如跟踪器、光谱仪和量热仪)中的 CR 相互作用。鉴于此类仪器的曝光有限且光谱急剧下降,目前仅在低于 ∼ 100 TeV 时才切合实际。在间接观测(见第 30.2.2 节)中,
弥散功能障碍和低氧血症。影像学上可见双肺弥漫性或多灶性分布性病变,最终发展为弥漫性肺纤维化、蜂窝肺(Meyer,2014;Conte等,2022)。美国胸科学会(ATS)和欧洲呼吸学会(ERS)根据病因、临床和病理特点将ILD分为四类:1)原因已知的ILD;2)特发性间质性肺炎;3)肉芽肿性ILD;4)其他罕见ILD,其中已知的ILD病因包括药物相关,美国药物因素占所有ILD的1.9%~3.5%(Distefano等,2020),而我国DILD的发病率被低估。目前已知引起DILD的药物有数百种,包括抗肿瘤药物、抗微生物药物、抗血管药物等。本研究回顾性分析了我院2020年抗肿瘤药物引起ILD的用药情况,为临床加强抗肿瘤药物引起ILD的管理提供参考。
摘要:弥散 MRI 衍生的大脑结构连接组或大脑网络在大脑研究中得到广泛应用。然而,构建大脑网络高度依赖于各种纤维束成像算法,这导致难以确定下游分析的最佳视图。在本文中,我们提出从多视图大脑网络中学习统一的表示。具体而言,我们希望学习到的表示能够公平地、解开纠缠的感觉传达来自不同视图的信息。我们通过使用无监督变分图自动编码器的方法实现解缠。我们通过另一种训练程序实现了视图公平性,即比例性。更具体地说,我们在训练深度网络和网络流问题之间建立了一个类比。基于这种类比,通过一种意识到比例的网络调度算法实现了公平的表示学习。实验结果表明,学习到的表示可以很好地适应各种下游任务。他们还表明,所提出的方法有效地保持了比例性。