自从引入和发展功能性神经成像以来,对人类大脑功能的研究取得了长足的进步。功能性磁共振成像 (fMRI) 和正电子发射断层扫描 (PET) 一直处于这一发展的前沿,但它们也存在局限性。两者都对参与者的行动能力施加了重大限制,这阻碍了它们在婴儿等具有挑战性的人群中的应用以及在研究涉及运动的神经过程和行为方面的应用。由于相关成本、狭窄的扫描仪环境以及(就 PET 而言)放射性示踪剂的使用,延长或重复监测也很困难。1、2 此外,fMRI 对电子或金属植入物(如起搏器、人工耳蜗、动脉瘤夹和手术器械)有禁忌症。由于 MRI 和 PET 设备体积大、固定,并且要求参与者平躺,因此在日常场景中(例如面对面交谈时)研究大脑非常困难。近年来,漫射光学方法在克服这些局限性方面显示出了巨大的潜力。3、4 功能性近红外光谱 (fNIRS) 使用近红外光来检测大脑功能。它使用放置在头皮上的光源和探测器阵列来监测大脑氧合血红蛋白和脱氧血红蛋白浓度的变化,并可以提供空间分辨率为 3 厘米的二维图像。5、6 高密度漫射光学断层扫描 (HD-DOT) 是使用高密度测量阵列的 fNIRS 方法的外推。尽管在这种情况下“高密度”的定义尚未准确确定,但适当的定义是,HD-DOT 阵列提供具有几种不同源 - 探测器分离的通道,跨越“短分离(SS)”(<15 毫米)到“长”(≥30 毫米)范围,并在整个视野范围内在每个分离处提供重叠的空间灵敏度曲线。现已确定 HD-DOT 可以提供比 fNIRS 或其他弥散光学成像方法更优质的深度分辨图像。7 – 9 从多个重叠通道测量中获得的相互信息提高了空间分辨率,使用多个源 - 探测器分离可提高横向和深度特异性。此外,以不同的源 - 探测器分离进行采样提供了一种减少来自脑外组织信号影响的方法。10、11
d 自之前的 ATS 文件以来,已经开发了更新的肺量测定和弥散能力参考方程,值得广泛实施。∘ 建议在北美和其他地区为所代表的族群使用全球肺功能倡议 (GLI)-2012 多民族肺量测定参考值。它们在整个成长过程中的平稳连续性对测试儿童或青少年的实验室有利。∘ 在保持连续性很重要的情况下,国家健康和营养检查调查 (NHANES) III 参考值(2005 年 ATS/ERS 文件中建议用于北美)仍然适用。∘ 无论选择哪种参考源或正常下限 (LLN),解释人员在解释任何二分边界附近的值时都应注意不确定性。∘ 对于肺容量和弥散能力,由于可用的参考值差异很大,ATS 之前没有提出任何建议。已经完成了肺一氧化碳弥散能力 (D L CO ) 的大量国际数据汇编,并且正在对肺容量进行汇编。由此产生的参考方程在出版时应该被广泛采用。
单色光或进入特定周期性培养基的物质波显示出尖锐的bragg散射到特定的角度。然而,随机干扰完美的晶格位置会导致布拉格峰之间的弥散散射。随着分散体的增加,弥散散射最终占主导地位,最后,布拉格峰消失了。弥散散射是结构化的,在介质中揭示了相关性。例如,用于在水中X射线散射[1,2],可见光在单分散聚苯乙烯珠的无序堆积中的散射[3,4],这对相关函数具有宽峰,具有特征长度尺度,这又在结构函数中产生宽峰。在无序培养基的研究中,布拉格峰与周期性结构有关[5,6]。但是,没有预期的是,在任何规模上没有完美顺序的随机介质可以产生尖锐的散射角度,但我们在这里报告了这样的情况。对于我们选择的潜力,空间自相关函数具有宽峰,因为原子对相关函数在水中,但散射角度仍然非常清晰。这很令人震惊;下面定义的随机电势中的散射就像是在周期性电势中的布拉格散射,而不是相关液体中的散射。最接近的类似物(尽管不是完美的类似物)是粉末衍射,许多随机定向的微晶被密切包装。下面定义的电势没有这样的“微晶”,但它具有bragg峰。但是,散射的时间演变与Fermi的黄金法则不兼容,如下所述。我们通过检查电势的傅立叶成分来计算散射矩阵元素或等效地来解释这一惊喜。我们考虑以下形式的随机电势
弥散加权磁共振成像 (DWI) 常用于诊断急性脑梗塞,因为它能够显示因受损细胞水扩散变化而观察到的细胞毒性水肿。DWI 功能取决于水的微分扩散速率或布朗运动。因此,它常用于神经肿瘤学领域,用于脑肿瘤患者的诊断和随访。弥散受限由表观扩散系数 (ADC) 值较低表示,这与细胞毒性水肿、细胞过多或致密内容物(出血和蛋白质)、细胞数量和细胞核/细胞质比率增加以及大分子积累有关。细胞外空间减少会限制水分子的转移,从而导致恶性肿块中的扩散受限。根据先前的研究,细胞含量高的肿瘤表现出更多的扩散限制和较低的 ADC 值 (11,33)。从 DWI 获得的 ADC 值特别与肿瘤细胞、治疗反应、神经胶质瘤等级和生存期相关(4,21,33)。
胼胝体细胞毒性病变 (CLOCC) 也称为可逆性胼胝体压部病变轻度脑病或可逆性胼胝体压部病变综合征,在磁共振成像 (MRI) 上表现为胼胝体压部可逆性扩散受限。该病变与多种病因有关,包括细菌和病毒感染、代谢紊乱、药物、癫痫、恶性肿瘤和脑出血 [4,5] 。CLOCC 以细胞毒性水肿为潜在机制,被认为是继发性病变。CLOCC 患者的典型症状通常包括癫痫发作、意识障碍和谵妄 [6] 。放射学发现包括 T2 加权成像和液体衰减反转恢复上的高信号强度、T1 加权成像和急性期的低信号强度、弥散加权图像 (DWI) 上的高信号强度以及表观弥散系数 (ADC) 值降低 [6]。病变分为三种类型:位于胼胝体压部中央的小圆形或椭圆形病变、以胼胝体压部为中心但通过胼胝体纤维横向延伸到相邻白质的病变或以后方为中心但延伸到胼胝体前部的病变 [7]。预后方面,CLOCC 通常与良好的临床和放射学结果相关。病变通常在影像学检查中一周内消失,临床症状完全恢复,没有后遗症 [5]。
创伤性脑损伤 (TBI) 是一种常见疾病,具有许多潜在的急性和慢性神经系统后果( Smith 等人,2019 年),在过去二十年中导致美国约 100 万人死亡( Daugherty 和 Zhou,2016 年)。慢性创伤性脑损伤 (cTBI) 的神经病理学包括由创伤性损伤直接导致的原发性损伤,以及由一系列分子和细胞事件(包括细胞死亡、轴突损伤和炎症)导致的继发性损伤( Anguita 等人,2022 年; Zhang 等人,2022 年)。为了更好地了解潜在的神经病理学机制,对 TBI 慢性影响的信息的需求日益增长( Wickwire 等人,2016 年)。神经影像学在急性脑损伤中起着至关重要的作用,无论是在诊断还是通过检测需要干预或监测的损伤来指导适当的治疗(Taylor and Gercel-Taylor,2014;Douglas 等人,2015;Mckee and Daneshvar,2015)。然而,在大多数轻度至中度损伤的情况下,常规 T1 加权成像通常是正常的(McCrory 等人,2009)。此外,对 TBI 严重程度的初步评估并不一定能预测慢性残疾的程度(美国国家科学院,2019)。因此,正在积极研究先进的神经影像学生物标志物,试图更好地诊断和监测 TBI 的急性和慢性影响(Hu 等人,2022)。弥漫性轴突损伤被认为是 TBI 的一个关键病理机制,因此,它导致了用于可视化 WM 完整性的先进 MRI 技术的开发( Hashim et al., 2017 )。DTI 和神经突取向弥散成像 (NODDI)(Zhang et al., 2012 )是先进的 MRI 技术,被认为可以反映一系列临床条件下白质 (WM) 微观结构特性的完整性。弥散张量成像 (DTI) 假设单个微观结构区室内存在高斯弥散,而 NODDI 使用高性能磁场梯度探测更复杂的非高斯特性(Kamiya et al., 2020 )。与 DTI 不同,NODDI 使用七个参数来测量白质微结构的特性,包括细胞内水、细胞外水和自由水,而 DTI 在描述特定体素的各向同性与各向异性扩散方面受到限制(Muller 等人,2021 年)。此前已有研究表明,DTI 和 NODDI 在急性至慢性 TBI 患者的微结构完整性方面提供了不同但互补的信息(Wu 等人,2018 年;Palacios 等人,2020 年;Muller 等人,2021 年)。在 DTI 指标中,各向异性分数 (FA) 是研究最多的,通常用作白质“完整性”的指标。FA 是
我们小组对音乐、心理学和神经科学的跨学科研究感兴趣。我们采用脑电图 (EEG)、功能、结构和弥散加权神经成像 (MRI) 以及心理测量等技术来回答与音乐聆听和演奏如何在整个生命周期中与大脑互动和影响大脑相关的各种问题。我们目前的项目主要关注音乐训练对洛杉矶服务不足社区参与者儿童发展的影响。JumpStart 学者将参与数据收集和数据管理的各个方面,与儿童参与者和研究人员合作。学生将接触脑电图和行为数据收集技术,并负责学习协议和良好的研究习惯。学生将负责收集和维护高质量数据。
†注射开始之前,小瓶应在室温下。建议立即使用。如果不立即使用,请使用无菌技术将整个Ocrevus Zunovo含量从小瓶中提取到注射器中,以说明剂量体积(23 mL)加上皮下(SC)输注集的启动体积。用注射器关闭盖代替转移针。请勿附加SC输注集。如果不立即使用,则可以在弥散日光下在环境温度≤25°C(77°C)的环境温度≤25°C(77°C)下,在环境温度≤25°C(77°C)下,可以将闭合的注射器(2°C至8°C [36°F至46°F])持续72小时。