在过去的几十年中,层状材料的屈曲不稳定性一直是分析、实验和数值研究的主题。这些系统传统上被认为是无应力表面,而表面压力的影响研究不足。在这项研究中,我们开发了一个双层压缩的有限元模型,发现它在表面压力下的表现不同。我们研究了双层系统在两种压缩模式(外部施加和内部生长产生的)下的屈曲开始、初始波长和后屈曲行为。在各种刚度比(1 < μ f / μ s < 100)中,我们观察到在存在表面压力的情况下稳定性会降低,尤其是在低刚度对比度状态(μ f / μ s < 10)下。我们的结果表明压力边界条件对于双层系统稳定性分析的重要性,尤其是在软物质和生物物质物理学中,例如在脑脊液压力下大脑皮层的折叠,其中压力可能会影响形态发生和屈曲模式。[DOI:10.1115 / 1.4057020]
哺乳动物/mTOR是丝氨酸 - 硫代激酶。它控制了哺乳动物细胞的许多重要功能,例如细胞存活和蛋白质合成[4]。在2000年代初期,神经科学家开始对MTOR目标的兴趣。4E结合蛋白和P70核糖体S6蛋白激酶1最初研究[5]。在确定MTOR在神经元形态发生,生存和分化中的作用后不久,靶标开始流行,许多科学家在PD和Alzheimer病(AD)等不同疾病中观察到了其在不同疾病中的作用。与MTOR相关的生理状况和神经病理列表迅速增加,但是对MTOR调节及其神经元中其细胞效应子的透彻了解仍然难以捉摸。自噬,翻译,细胞信号传导,转录和细胞骨架动力学都受MTOR活性变化的影响[6]。根据新的研究,MTOR的过表达与PD的发病机理有关[7,8]。结果,mTOR可能是PD的可能治疗靶标之一[9]。MTOR活动很有争议。它具有
心脏发育涉及从线性心管到不对称环状和气球状器官的复杂结构重塑。先前的研究已将细胞外基质 (ECM) 空间的区域扩张与发育过程中的组织形态发生联系起来。我们开发了 morphoHeart,这是一款 3D 组织分割和形态测量软件,具有用户友好的图形界面 (GUI),可首次提供活体胚胎中心脏和 ECM 形态的集成 3D 可视化和多参数分析。morphoHeart 揭示了 ECM 在心脏发育过程中经历区域动态扩张和缩小,同时伴有腔室特异性的形态成熟。我们使用 morphoHeart 证明由 ECM 交联剂 Hapln1a 驱动的区域化 ECM 扩张会促进心脏发育过程中的心房腔扩张。最后,morphoHeart 的 GUI 将其用途扩展到心脏组织之外,允许将其分割和形态分析工具应用于任何荧光标记组织的 z 堆栈图像。
[H1]抽象的机械信号传导在发育和成人生物体中影响多个生物学过程,包括细胞命运过渡,细胞迁移,形态发生和免疫反应。在这里,我们回顾了有关机械信号两种主要途径的机制和功能的最新见解:机械信号的外部机械信号传导,例如底物特性的机械感应或剪切应力;以及由细胞表面本身的物理特性调节的机械信号传导。我们讨论了这两类机械信号传导如何调节干细胞功能以及体内发育过程的示例。我们还讨论了细胞表面力学如何影响细胞内信号传导,然后细胞内信号传导如何控制细胞表面力学,从而产生反馈到机械传感的调节中。机械感应,细胞内信号传导和细胞表面力学之间的合作对生物过程有深远的影响。我们在这里讨论我们对这三个要素如何相互作用以调节干细胞命运和发育的理解。
基因组编辑的最新进展极大地促进了开发生物技术作物以实现更可持续的粮食生产的努力。CRISPR/Cas 是最通用的基因组编辑工具,它已显示出创造基因组修饰的潜力,这些修饰范围从基因敲除和基因表达模式调节到等位基因特异性改变,以设计出具有多种改良农艺性状的优良基因型。然而,一个常见的瓶颈是将 CRISPR/Cas 递送到不易转化和再生的作物。最近提出了几种技术来克服转化顽固性,包括 HI-Edit/IMGE 和编码形态发生调节剂的基因的异位/瞬时表达。这些技术可以消除使作物无法进行基因组编辑的障碍。在这篇综述中,我们讨论了作物基因组编辑的进展,特别关注使用技术来改善复杂性状,例如玉米的水分利用效率、干旱胁迫和产量。
全球气候变化和全球变暖,加上人口增长,引发了人们对可持续粮食供应和生物能源需求的担忧。高粱 [ Sorghum bicolor (L.) Moench] 在全球谷物产量中排名第五;它是一种 C 4 作物,比其他主要谷物具有更高的抗逆性,并且用途广泛,例如谷物、饲料和生物质。因此,高粱作为实现可持续发展目标 (SDG) 的有前途的作物而备受关注。此外,高粱是 C 4 禾本科植物的合适遗传模型,因为它具有高度的形态多样性和与其他 C 4 禾本科植物相比相对较小的基因组大小。虽然与水稻和玉米等其他作物相比,高粱育种和遗传研究落后,但最近的研究进展已经确定了控制高粱重要农艺性状的几个基因和许多数量性状位点 (QTL)。本综述概述了可能对高粱育种用于谷物和生物质利用有用的性状和遗传信息,重点关注形态发生方面。
摘要 植物转化的广泛应用仍然具有挑战性,因为许多植物物种的植物再生和基于再生的转化效率极低。许多物种和基因型对传统的基于激素的再生系统没有反应。这种再生顽固性阻碍了许多技术在各种植物物种(包括观赏花卉、灌木和树木)中的应用,例如微繁殖、转基因育种和基因编辑。长期以来,人们一直在研究各种发育基因改善植物分生诱导和再生的能力。最近,有研究表明,形态发生调节基因 WUSCHEL 和 BABY BOOM 的组合和精细表达可以减轻它们的多效性并允许顽固性单子叶植物进行转化。此外,单独或与 GRF 相互作用因子 (GIF) 组合异位表达植物生长调节因子 (GRF) 可改善双子叶和单子叶物种的再生和转化。微调这些基因的表达为提高转化效率和促进新育种技术在观赏植物中的应用提供了新的机会。
摘要在过去十年中,通过一系列动物模型在功能水平上鉴定并表征了许多参与大脑诱导,规范和区域化的基因。在这些基因中,OTX1和OTX2,果蝇正畸形(OTD)基因的两个鼠类同源物,编码转录因子,在鼻脑的形态发生中起关键作用。经典的敲除研究表明,OTX2对于早期规范和随后的前神经板的维护至关重要,而OTX1主要是正常的皮质生成和感官器官发育所必需的。将两个基因产物的最小阈值正确地构成前脑的构图和地质组织者的定位。第三基因,骨科(OTP)是控制神经内分泌下丘脑发育的遗传途径的关键要素。本综述介绍了OTX1,OTX2和OTP函数的全面分析,以及otx基因被果蝇同源物otd的模型所暗示的可能的进化含义。
<神圣的心脏发育始于当基本发芽的叶片,中胚层和内胚层形成时,在多种细胞类型的形态发生过程中,形成了中胚层和内胚层。一个复杂而协调的细胞间信号网络可引起大规模的织物迁移和内在化过程,以获得脊椎动物胚胎的基础方案。<将源自中胚层细胞的前体衍生而成的前体在开发的第十三至第十五天之间,将双侧胚胎的前端解释并合并为两个种群。一组调节发育和跟踪因素的基因指导并保留这些细胞元素作为心脏前体。心脏转录因子以合作和分层模式运行,以诱导合适的结构蛋白作为心肌细胞和离子通道的特定收缩系统的组成部分。许多心脏转录因子不仅是出于心脏前体朝特定形式的意图进行干预,而且在心脏形态发生的后续方面,例如建立各个房间的身份,室内天气对准和传导系统的发展。因此,心脏转录因子的足够空间和雷暴功能决定了健康和功能性心脏的发展。对正确的基因调节的需求是用与心脏转录因子突变相关或引起的许多先天性心脏缺陷来体现的。根据转录因子的不同亚组的表达,在胚胎发育的早期阶段,心脏的前体细胞的库被分为两个不同的祖细胞。第一个称为主要心脏场,将形成心脏管(线性),原始心脏草图,这将产生左心室和大多数心房织物。第二个心脏场,在发育的各个阶段,都符合右心室的形成和污水的特征。发育心脏从神经心脏峰和间皮获得进一步的贡献。神经心脏顶由外胚层细胞组成,这些细胞通过中间线的Actoderma神经驯化而从神经斑块的侧缘到达心脏场。神经心脏波峰迁移到形成心脏的区域,在该区域有助于动脉和肺部血管流出的障碍。间皮是产生心外膜的胚胎细胞来源,表达是一种扮演心脏内部表面并在一系列过程中起作用的上皮,例如冠状动脉系统的发展和纤维无菌的形成。
引言早期人类发展被定义为受孕后的前8周:涵盖胚胎发生的主要地标在建立健康的妊娠方面。第1至3周纳入胚胎植入,细菌层的规范和种系,以及建立早期身体计划。第3至5周代表早期的器官发生阶段,其中形成了主要器官系统中的祖细胞及其衍生的细胞类型,并伴有形态发生的图案,例如神经管的闭合和心脏的循环。从第5周到第8周,器官发生继续建立更成熟的器官,例如肢体芽中的骨骼生成和脊柱的形成,以及整体体内生长。此后,获得了特定于物种的解剖结构和功能性属性的胚胎被认为是子宫内发育中其余部分的胎儿。对在这个形成阶段的胚胎发展的了解很重要,因为在此期间发生的模式事件和细胞相互作用对于最终导致后代的组织和器官系统的结构组织至关重要。对正常发育的了解也可以使