电极界面是电子和电化学设备不可或缺的组成部分。它们在工作条件下的稳定性对于无数应用至关重要,例如电池、非易失性存储器、忆阻器、压电换能器和电容器。[1–5] 众所周知,材料的热力学稳定性受限于其成分的化学势(活性)的固定范围。[6] 例如,只有当与氧分压相关的氧化学势高于氧化物的形成焓时,氧化物才是稳定的。除了(原子)成分的化学势之外,通过电荷中性条件决定材料中费米能的电子化学势也必须保持在一定范围内。相关的电化学不稳定性可以通过两种方式引起:i)通过形成自补偿缺陷;[7] ii)通过
电极接口是电子和电化学设备的必不可少的成分。在运营条件下,其稳定性对于无数应用至关重要,例如,击球手,非易失性记忆,备忘录,压电传输器和电容器至关重要。[1-5]已知材料的热力学稳定性仅限于其成分的固定化学电位(活性)。[6]例如,仅当连接到氧局部压的氧化学电位高于氧化物的形成焓时,氧化物才是最高的。除了(原子)成分的化学势外,还必须保留在特定范围内的(通过电荷中立性条件决定费米的能量)。可以通过两种方式诱导相关的电型不稳定性:i)通过自加密缺陷的伪造; [7] ii)
在这项研究中,确定了纤维素和硝酸纤维素样品的标准形成焓和熵。这些特征用于热力学分析整个纤维素样品和局部硝化的大量硝化,仅对纤维素的无定形结构域(AD)。发现,纤维素的大量硝化作用至1.5的替代程度(DS)是吸热性的,主要取决于温度 - 熵成分对负Gibbs电位的贡献。但是,如果DS高于1.5,则大量硝化变为放热,其可行性取决于焓对Gibbs电位的影响。在纤维素AD的局部硝化的情况下,对Gibbs电位的主要贡献是由反应焓决定了该过程的可行性。表明,随着硝酸纤维素ds的增强,反应的吉布斯电位的负值增加。因此,对较高DS的纤维素硝化在热力学上是有利的。由于局部硝化样品是无定形硝酸纤维素和结晶纤维素的共聚物,因此它们的亲水性应比纤维素明显小。因此,可以预期,局部硝化方法将为纤维素材料的廉价疏水方法找到广泛的实际应用。
高熵碳化物 (HEC) 备受关注,因为它们是超高温和高硬度应用的有希望的材料。为了发现具有增强屈服强度和硬度的碳化物,需要基于机制的设计方法。在本研究中,提出了位错核原子随机性作为提高硬度的机制,其中位错核处不同元素之间的随机相互作用使位错更难滑移。基于密度泛函理论计算了 a ∕ 2 ⟨ 1 ̄ 10 ⟩ {110} 刃位错的 Peierls 应力,其中通过增加位错核处的元素数量来增加原子的随机性。结果表明,Peierls 应力在统计上随着元素数量的增加而增加,表明加入更多元素可能会产生更高的硬度。基于这一指导原则,我们制备了三种八阳离子 HEC(Ti、Zr、Hf、V、Nb、Ta、X、Y)C(X、Y = Mo、W、Cr、Mo 或 Cr、W),其成分由从头计算的形成焓和熵形成能力决定。单相致密陶瓷均表现出约 40 GPa 的高纳米压痕硬度。位错核心处不同元素之间的随机相互作用为提高结构陶瓷的硬度提供了一种机制。
双钙钛矿卤化物是可再生能源生产的有前途的材料,满足解决能源稀缺问题的标准。因此,研究这些卤化物可能对光电和太阳能电池应用有用。在这项研究中,我们使用全电位线性线性的增强平面波(FP-LAPW)方法,使用密度功能理论计算,研究了2 agircl 6(a = cs,rb,k)的结构,机械,热力学,电子和光学特性,以评估其适用于renewability的适用性,并使用全电位线性的增强平面波(FP-lapw)方法来计算。金匠公差因子,八面体因子和新的公差因子已经证实了预测化合物的立方稳定性。我们还通过计算形成焓,结合能和声子分散曲线来验证这些化合物的热力学稳定性。此外,对刚度常数的Born-huang稳定性要求证实了标题化合物的机械稳定性。为了预测准确的光电特性,我们采用了TB-MBJ电位。电子带结构的计算表明,标题为halides的直接带隙半导体性质,值分别为1.43 eV,1.50 eV和1.55 eV,分别为CS 2 AGIRCL 6,RB 2 AGIRCL 6和K 2 AGIRCL 6。此外,所有这些化合物都显示出非常低的有效电子质量,表明它们的高载体迁移率可能。这些化合物的光电导率和吸收光谱验证了我们的条带结构结果的准确性。此外,2 AGIRCL 6(A = CS,RB,K)化合物的光学性质表现出非常低的反射率和出色的光吸收系数(10 5 cm -1)在可见光光谱中,表明它们作为太阳能电池中吸收层的适合性。