摘要。创新材料和智能控制系统的研究受到提供可持续能源解决方案的愿望的推动,目的是提高能量收集和存储设备的效率和适应性。本研究介绍了一种创新方法来解决这一问题,即结合 SMART(自我监测、分析和报告技术)材料与复杂的智能控制方法。所考虑的系统利用 SMART 材料的固有材料特性,包括压电、热电和形状记忆合金,目的是捕获环境能量并将其转化为可有效利用的电能。为了充分利用 SMART 材料的功能,提出了一种新颖的控制框架,该框架集成了机器学习算法、实时传感器数据和自适应控制程序。智能控制系统通过有效地适应不同的操作情况并优化能量转换和存储过程,提高了能量收集和存储设备的有效性和耐用性。研究结果表明,利用 SMART 材料的能源系统的能源转换效率显著提高,寿命和可靠性也显著提高。此外,控制系统适应各种环境状况和能源的能力使这项研究处于尖端能源技术的前沿。
聚合物驱动材料的各向异性一维收缩运动引起了从软机器人到仿生肌肉等领域日益增长的兴趣。尽管光驱动液晶聚合物(LCP)是实现远程和空间触发收缩(<20%)的有希望的候选者,但开发具有超大收缩率的 LCP 系统仍然存在许多挑战。这里提出了一种结合形状记忆效应和光化学相变的新策略,在一种新设计的线性液晶共聚物中实现了高达 81% 的光驱动收缩,其中偶氮苯和苯甲酸苯酯的共晶液晶原自组织成近晶 B 相。重要的是,这种高度有序的结构作为开关段牢牢锁住了应力诱导的应变能,该能通过可逆的反式 - 顺式光异构化迅速释放,从而破坏层状液晶相,从而导致这种超大收缩。纤维作为光驱动的构建块,可以实现精确的折纸,模仿“破损”蜘蛛网的恢复,并筛选不同尺寸的物体,为光驱动 LCPs 从仿生机器人到人类助手的高级应用奠定了新的基础。
3D 打印,又称增材制造,是根据数字化模型的参数逐层沉积熔融材料来创建固体产品的过程。3D 打印的概念出现于 20 世纪末。20 世纪 80 年代,3D 打印因其非凡的材料效率、出色的表面光洁度和一步到位的制造能力而开始与传统的制造方法相媲美。该技术已逐渐被引入生物医学、电子、自我再生和仿生学领域。然而,它无法控制由变形和材料各向异性行为引起的尺寸变化。4D 打印克服了这些困难,它允许动态改变结构。第四个参数为产品提供了灵活性,因为通过外部刺激,用于生产的智能材料可以改变产品的尺寸、属性和其他参数。智能或环境敏感材料(金属合金、聚合物、陶瓷、复合材料)可以通过温度、吸水率、电磁和红外辐射、磁场、电流、电压、pH 值变化等变化来激活。材料的这种智能行为对于药物输送、传感器、移动电子产品、时尚产品和其他工程物体都很重要。4D 打印的独特特性基于材料的形状记忆效应和材料对外部刺激作出反应的能力。
近年来,许多具有可重新配置功能的创新微/纳米光学设备(MNOD)致力于探索创新的微/纳米光学设备(MNOD),这是非常重要的,因为对下一代光子系统的需求逐渐增加。幸运的是,相变材料(PCM)为实现这一目标提供了极具竞争力的途径。相变引起光学,电性能或形状中材料的显着变化,从而引发了极大的研究兴趣,以应用PCM来重新确定可耐配合的微型/纳米光学设备(RMNODS)。更具体地,基于PCM的RMNOD可以与按需或自适应举止与入射光相互作用,从而实现独特的功能。在这篇综述中,基于阶段过渡的rmnods是系统地汇总的,并从材料,相变机制到应用程序进行了全面概述。强烈引入了由三种典型PCM组成的可重新配置的光学设备,包括葡萄球核化合物,过渡金属氧化物和形状记忆合金,突出了可逆状态开关和光学响应的巨大对比度以及由相转换产生的指定实用性。最后,给出了整个内容的全面摘要,讨论了挑战,并在将来概述了基于PCMS的RMNOD的潜在发展。
许多潜在应用(包括生物医学应用)都需要复杂而实用的 SMP 部件功能和几何形状,这要求部件内具有相应复杂的应变模式,例如双轴、扭转、弯曲或剪切应变、应变梯度或其他空间变化应变。这些复杂的应变模式通常无法通过当前的编程技术实现,特别是对于小型或复杂部件几何形状的情况。事实上,复杂应变的精确编程仍然超出了形状记忆编程的当前水平,而且,由于在建立执行所需的机械驱动编程所需的设备方面存在挑战,甚至使用相对简单的 3D SMP 部件单轴编程替代方案(例如双轴应变编程)仍然极其有限。例如,3D 部件的多轴编程需要一种机制来抓住部件并在多个轴上施加所需的分布应变。因此,迄今为止,只有少数研究成功展示了 3D SMP 部件的多轴编程,而且这些研究仅限于压缩编程,使用手动(实际上是手指和拇指)操作或专门的压接器或夹具实现,[8,16] 因此只展示了膨胀多轴恢复。缺乏用于
从植物追踪太阳到鸟翼的空气动力学,形状变化是自然结构性能的关键。多年来,人类工程学一直依赖机械关节,现在专注于通过材料几何形状的平滑、完整形式变化来提高空气动力学效率,这可以通过变形复合材料等技术实现。这些材料有望提高风力涡轮机的发电量和效率,并实现更安全、更可持续的飞机和汽车,它们既可以通过在几个稳定的物理状态之间循环来实现大几何变化,同时又可以通过利用热膨胀系数不匹配和结构各向异性、形状记忆聚合物和 4D 打印来实现更渐进的几何变化。这些各种形状变化系统的优点和局限性是广泛而持续的学术研究和商业和国防工业试验的主题,以提高这些技术的可行性,从而实现广泛采用。形状变化能力通常与材料成本、质量、机械性能、可制造性和能源需求方面的问题有关。尽管如此,该技术已取得了长足的进步,并在先进的民用和军用飞机以及高性能汽车上进行了成功的试验,这表明未来对该材料平台的研究和开发可能会彻底改变我们许多最关键的发电、国防和运输系统。
应用。 [3] 然而,尽管取得了这些进展,这些执行器要实现大输出力和高重量标准化工作能力(以下称为“工作能力”)仍然具有挑战性。 [4] 这是因为组成材料较软且体积有限,难以储存和释放高机械能。 [2d,5] 目前,大多数微型软执行器的工作能力相对较低,在 10 –3 至 10 2 J kg − 1 范围内(图 S1,支持信息),[3b,6] 这使得它们无法用于潜在的医疗器械、操作和其他需要高工作能力的应用。 [7] 此外,现有磁控软执行器的最大输出力约为 60 µN。然而,许多医疗程序,如支架植入术 [8] 要求装置的输出力超过 1 N,这约为磁控软执行器最大输出力的 10软气动执行器同时提供了高机械性能和柔顺性,使其在强力操控中得到了广泛的应用。[9] 具体而言,尽管杨氏模量较小(约为 10 kPa),但这些执行器可以提供高工作能力(9 J g-1),比大多数已报道的执行器的性能高出约 10 1 –10 3 倍。尽管形状记忆合金具有类似的工作能力,但它是执行器的 10 6 倍
近几十年来,已经探索了折纸以帮助设计工程结构。这些结构涵盖了多个尺度,已被证明用于航空航天,超材料,生物医学,机器人和建筑应用等各个领域。从传统上讲,折纸或可部署的结构是由手,电动机或气动执行器驱动的,这可能会导致沉重或笨重的结构。另一方面,有效材料对外部刺激的响应重新构成,消除了对外部机械载荷和笨重的致动系统的需求。因此,近年来,与可部署结构合并的活性材料已经显示出对轻重,可编程折纸的远程致动的希望。在这篇评论中,有效材料,例如形状记忆聚合物(SMP)和合金(SMA),水凝胶,液晶弹性体(LCES),磁性软材料(MSMS)以及共价适应网络(CAN)聚合物,它们的驱动机制,以及它们如何用于现有的origanami和这些结构的使用方式,以及它们是可用的结构。此外,突出显示了构建活性折纸的最新制造方法。总结了折纸的现有结构建模策略,用于描述活跃材料的构造模型以及主动折纸研究的最大挑战和未来方向。
基于活性材料的执行器的集成添加剂制造可能会在跨生物医学工程,机器人技术或航空航天等学科的许多应用中取代常规电动机。在这项工作中,通过由热塑性粘合剂和金属粉末组成的3D打印的纤维打印来证明基于挤出的基于挤出的功能性NITI形状内存合金。两种合金是制造的,一种显示超弹性,另一种在室温下显示形状的内存特性。两种合金的微观结构均具有特征性的特征,并具有透明的热机械特性。3D打印的NITI显示形状的记忆应力为1。分别为1%的超弹性应变1。3%的施加应变为4%。为了扩大形状记忆应力执行器的几何形状,设计,制造和测试。这项研究的结果可能会在活动结构的增材制造领域中找到应用,也称为4D打印。通常,多种材料用于此类结构,这些结构通常会遭受机械性能和耐用性不佳的影响。在这项工作中对金属材料的使用可能有助于克服这些局限性。2022作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
DNA 水凝胶最近引起了人们的极大兴趣,因为它们具有高含水量的多孔 3D 结构、类似组织的弹性,并且能够通过其核酸序列进行非常有效的编程,例如,实现形状记忆持久性、分子识别能力和刺激敏感性,使其成为生物医学、传感、催化和材料科学应用的有吸引力的材料。1 在用于制备 DNA 水凝胶的众多方法中,通常基于合成的线性或分支 DNA 基序的自组装,通常借助于酶连接或杂交链式反应,滚环扩增 (RCA) 起着特殊的作用,因为所需的合成寡核苷酸成本相对较低。 2 RCA 使用 phi29 DNA 聚合酶从短的环状 ssDNA 模板开始生成长的串联单链 DNA (ssDNA) 链 (4 20 000 nt),由于其具有极高的合成能力,因此可以在等温条件下廉价地生产大量 DNA。3 与基于杂交的 DNA 水凝胶不同,在杂交效率完全的前提下,DNA 含量可以根据初始 DNA 单体浓度估算出来,4 RCA 产生的 DNA 则不易测量。值得注意的是,到目前为止,还没有通用的方法来准确量化 RCA 水凝胶的 DNA 含量,但这些材料