Amazonas 3 (2011) · 3 个样条轮廓喇叭(Ka 波段) Measat 3B (2012) · 1 个轴向和径向波纹喇叭(X 波段) SES-10 (2014) · 1 个轴向和径向波纹喇叭(Ku 波段) SES-12 (2015) · 轴向和径向波纹喇叭(Ku 波段) Hispasat 1F (2014) · 2 个带轴向波纹的样条轮廓喇叭(Ka 波段) Amazonas 5 (2015) · 1 个轴向和径向波纹喇叭(Ku 波段) · 5 个样条轮廓喇叭(Ka 波段) · 1 个隔膜偏振器(Ka 波段) · 制造了 20 多个组件 Quantum (2018) · 样条喇叭天线(Ku 波段) · 滤波器(Ku 波段)· OMT(Ku 波段)· 制造了 20 多个组件 Kmilsat(2018 年)· 轴向和径向波纹喇叭(X 波段)· 偏振器(X 波段)· 双工器(X 波段) Egypsat(2018 年)· 轴向和径向波纹喇叭(Ka 波段) Spainsat NG 第一阶段(2019 年)· 2 个样条轮廓喇叭(X 波段)· 2 个隔膜偏振器(X 波段)· 2 个带通滤波器(X 波段)· 附加工具和套件 16 台 SmallSat(2023 年第四季度)· 1 个双圆极化双波段 K/Ka(4 端口)
Jamal Chenouf,Mourad Boutahir,B。Fakrach,A。Rahmani,H。Chadli等人。π-偶联的Quaterthiyophene对径向呼吸和分支模式的半导体和金属单核碳纳米管的封装效果。计算化学杂志,2020,41(28),pp.2420-2428。10.1002/jcc.26408。hal-03017613
森林是全球碳循环的组成部分。这些生态系统将碳在植物生物量和土壤中隔离。这项研究是在Bhaktapur的Linga Guthi社区森林中进行的,以通过树环分析估算Pinus Roxburghii的碳库存和径向生长。随机放置了总共32个250 m 2面积的圆图。子图用于研究树苗,垃圾,草药和土壤。为了进行树环分析,从不同的森林块中收集了树核心样品。环宽度。用于树环分析,Cofecha和Arstan程序。Linga Guthi社区森林的平均碳库存为272.22±17.36 t/ha。同样,它具有206.87±4.47 t/ha agtc,41.37±2.19 t/ha bgtc,23.814±1.00 t/ha soc。森林的碳固剩速度为2.22 ct/ ha/年。发现森林中松树的平均径向生长为2.06±0.13毫米/年。最大径向生长为4.47 mm/yr。该森林中记录的最古老的树是158年,直径为58厘米。但是,森林的平均年龄为98岁。为从1854年至2013年延伸的松树准备了158年的环宽年表
瑞士汝拉山脉的旧 Belchen 隧道采用钻孔爆破法在膨胀沉积岩(即富含硬石膏的泥灰岩 (Gipskeuper) 和 Opalinus 粘土页岩 (OPA))中开挖。早在 20 世纪 60 年代施工期间,这两种岩层就通过高膨胀压力和隆起对隧道支撑造成了严重损坏,后来这些隧道不得不再次翻新。重要的维护和修理促使我们用隧道掘进机 (TBM) 建造了第三条新的 Belchen 隧道(2016 – 2021 年)。在本研究中,我们展示了在位于新 Belchen 隧道强烈断层的 OPA 段的监测段获取的现场数据集,这些数据集用于研究四年多以来的应力演变和控制机制。主要数据集包括总径向压力、径向应变、岩石含水量、岩石和混凝土温度的时间序列,以及从钻孔日志和三维摄影测量开挖面模型分析中获得的地质结构细节。最后,一系列理想化的数值模拟探索了测量温度变化对测量总压力的影响,证实了温度对与混凝土凝固和季节性气候变化有关的径向压力有很强的影响。我们发现,在我们的监测部分,隧道支撑上的径向压力非常不均匀,即它们介于 0.5 MPa 和 1.5 MPa 之间,并且在开挖 4 年后仍在缓慢增加。测量的压力是旧 Belchen 隧道管中测量压力的 2 到 5 倍,其大小与实验室测试中获得的膨胀压力相似。EDZ 渗透性测量、含水量演变和隧道底板的径向应变数据表明,膨胀过程有助于长期径向压力的积累。热弹性变形和膨胀可能会因构造断层的局部复活和裂缝起始应力水平下的间隙灌浆开裂而叠加。
Wꞏm -2 ꞏK -4 ṁ 质量流量 (kg s -1 ) Փ 直径 (m) ∆P 压降 (Pa) θ 出口温度阈值系数 Pe 佩克莱特数,Pe=D p ꞏu sup /α Pr 普朗特数,Pr=C p,f ∙ μ f / λ frp 球体径向坐标 下标 r 罐体径向坐标 amb 环境 Ra 瑞利数,Ra= GrꞏPr Re 颗粒雷诺数,Re= ( ρ f ꞏD p ꞏu sup )/ μ fb 罐内直径的填料床区域 R int 罐体内半径 (m) ch 装料 R mid 罐体中部半径 (m) dis 卸料 R ext 罐体外半径 (m) eff 有效值 t 时间 (s) ext 罐体外表面 T 温度 (K) f 流体 TC 入口最冷工作温度 (K) TH 最高工作温度(K) int 罐内表面 T in 流体入口温度 (K) max 最大 T out 流体出口温度 (K) out 出口 T o 参考温度 (K) p 颗粒 TA A 位置的径向温度 rad 辐射 TB B 位置的径向温度 s 固体 TC C 位置的径向温度 sf 固体到流体相 u 间隙流体速度 (ms -1 ),u = ṁ /( ρ f ꞏεꞏπꞏR 2 int ) w 壁
我们的分销分支机构 Milton Ross Composants 除我们自己的陶瓷生产外,还可以通过与专业制造商(主要是欧洲)合作,提供全系列(钽除外)电容器(薄膜、电解)和电阻器(厚膜、薄膜、线绕),提供相同的高价值产品、高电压、高精度、大值、定制产品,并且始终具有最短的交货时间。
模块编号 # 08 讲座编号 # 40 岩体模量的确定:径向顶升试验和古德曼千斤顶试验
图 6. 带有集成光学腔的离子阱:(a)因斯布鲁克大学的集成光学腔阱 [ 93 ]。从离子发射的 854nm 光子的 50% 可被腔收集,并转换为 1550nm 的通信波长。(b)萨塞克斯大学的集成光学腔阱。该阱展示了离子和腔模式之间的第一个强耦合。(c)奥胡斯大学的离子阱。腔镜 (CM) 沿轴向,径向泵浦光束用于将离子泵回多普勒冷却循环。这些离子可在 CCD 上成像。压电换能器 (PZT) 用于主动锁定光学腔与 RP 激光器共振。(d)当径向 RP 激光器开启时,大约 100 个离子的整个晶体都是明亮的。 (d)当径向RP关闭时,只有腔内的离子是亮态,腔外的离子处于暗态[144]。
图 3-1. 缅因湾水深测量 ...................................................................................................................................................... 4 图 3-2. 深水条件下海上风能传输链路的典型组件* ........................................................................................ 6 图 3-3. 半潜式(左)和驳船式(右)浮动 OSP 概念 ............................................................................................. 7 图 3-4. 浮动变电站的设计概念 ............................................................................................................................. 8 图 3-5. 深水固定基础类型 ............................................................................................................................................. 9 图 3-6. 水下海上变电站概念 ............................................................................................................................. 11 图 3-7. 典型的海上 HVAC 径向链路 ............................................................................................................................. 12 图 3-8. 典型的海上 HVDC 径向链路 ............................................................................................................................. 12 图 3-9. 根据传输距离选择交流还是直流 ............................................................................................................. 13 图 3-10.图 3-11. 基于 VSC-HVDC 的输电技术的可用额定值 ............................................................................................................. 15 图 3-11. 电缆传输功率-距离曲线 ............................................................................................................................. 17 图 4-1. 定制(径向)传输示意图* ............................................................................................................................. 19 图 4-2. 捆绑式海上输电设计* ............................................................................................................................. 20 图 4-3. 具有海上平台互连的海上电网* ............................................................................................................. 21 图 4-4. 典型的协调输电规划流程 ............................................................................................................. 22