摘要 - Cloud文件系统为组织提供可扩展可靠的文件存储解决方案。但是,云文件系统已成为对手的主要目标,传统设计没有能力保护组织免受由恶意云提供商,共同租户或最终客户发起的无数攻击。最近提出了利用加密技术和受信任的执行环境(TEE)的设计,但仍迫使组织进行不良的权衡,从而导致安全性,功能性或性能限制。在本文中,我们介绍了BFS,一个云文件系统,该系统利用TEE提供的安全功能来引导新的安全协议,以提供强大的安全保证,高性能和透明的POSIX样界面,向客户端。bfs提供更强大的安全保证和最多2。在最先进的安全文件系统上加速5倍。此外,与行业标准NFS相比,BFS最多可实现2个。2×跨微基准测试的加速度,对于大多数宏观基准工作负载,<1×开销<1×开销。bfs展示了一个整体云文件系统设计,该设计不会牺牲组织的安全性,但可以包含外包的所有功能和性能优势。
在750℃下烧成6小时以上,成为单斜晶WO 3 相。 P-2、P-3在烧成前为单斜晶系WO 3 、三斜晶系WO 3 、单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297),但在750℃下烧成6小时以上,变为单斜晶系W 0.71 钼 0.29 O 3 (PDF 01-076-1297) 和矩形 W 0.4 Mo 0.6 O 3 (PDF 01-076-1280)。 P-4在750℃下烧制24小时之前,单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297)、矩形W 0.4 Mo 0.6 O 3 和单斜晶系MoO 3 混合,但经过100小时后。煅烧后,MoO 3 峰消失,单斜晶系W 0.71 Mo形成了0.29 O 3 和矩形晶体W 0.4 Mo 0.6 O 3 。 P-5在烧成前为单斜MoO 3 (PDF PDF 00-047-1081),但烧成6小时以上后,变为具有层状结构的矩形MoO 3 (PDF 03-065-2421)。
收集了净扭矩和NOx排放量等性能数据。使用基于 APRBS 和 Chirp 信号的输入信号,我们获得了大约 68.9 小时的训练数据和大约 8.3 小时的模型验证数据。此外,为了验证目的,我们还获取了日本目前用于乘用车认证测试的WLTC全球统一测试循环下的30分钟模拟驾驶数据。请注意,用于获取验证数据的 APRBS 和 Chirp 信号不包含在用于获取训练数据的输入信号中。 VDE模型中数据采样周期为0.01秒,数值实验获取的数据点数如表2所示。 2.2 AI引擎模型构建及性能评估 本研究在构建重现VDE特征的AI引擎模型时,采用了神经网络这种机器学习算法,也是一种模仿人类神经系统的数学模型。 AI发动机模型被设想用作第3章中描述的燃烧控制器的状态预测模型。在这里,我们构建了一个模型来预测燃烧控制器控制的三个目标:燃烧重心位置、燃烧周期和净扭矩。表3给出了AI引擎模型的输入和输出参数列表。对于输入参数,事先使用XGBoost(eXtreme Gradient Boosting)9)构建预测模型,并利用SHAP(SHapley Additive exPla-nations)10)进行重要性分析,选取对预测目标影响力较大的参数。此外,对于输入参数,进气压力和进气氧浓度是使用过去四秒的时间序列数据来测量的,同时考虑到瞬态运行期间的响应延迟。 在建立模型时,神经网络中超参数的设置对准确率有很大的影响。因此,在本研究中,我们使用树结构 Parzen 估计器 (TPE)11) 来优化隐藏层的数量和神经元的数量。在 TPE 中,我们设置了最小化评估函数的超参数。
• 第 44 号法案:2023 年《住房法规(住宅开发)修正案》 • 第 46 号法案:2023 年《住房法规(开发融资)修正案》 • 第 47 号法案:2023 年《住房法规(交通导向区)修正案》 本报告是对第 44 号法案各个方面的回应。根据第 44 号法案,到 2024 年 6 月 30 日,地方政府必须对“限制区”进行分区变更,以便在 2024 年 6 月 30 日之前达到规定的最低住宅单元数量。“限制区”在《温哥华宪章》第 565.03(1) 节中定义,包括自第 44 号法案获得御准之日起住宅用途仅限于单户住宅和/或复式住宅(包括任何次要套房、填充单户住宅、填充复式住宅和巷道住宅)的地区或区域(2023 年 12 月 7 日)。工作人员审查了温哥华的所有分区,并根据省立法和指导对其进行了评估,以确定哪些分区受到限制并需要进行分区变更。五个分区被评估为受限制:第一肖纳西区 (FSD)、RT-7 区、RT-9 区和两个 CD-1 附例。
摘要:重金属污染土壤和植被因其毒性和持久性而成为一个重大问题。对植被的毒性作用不仅包括生长受损、产量降低甚至植物死亡,还包括生物多样性丧失和生态系统退化。解决这一问题需要全面的监测和补救措施,以减轻对环境、人类健康和生态的影响。本综述探讨了用于检测和监测土壤重金属污染及其对植被的后续影响的遥感应用的最新方法和进展。通过综合当前的研究成果和技术发展,本综述深入了解了遥感监测陆地生态系统重金属污染的有效性和潜力。然而,目前的研究主要集中在回归和人工智能方法上,将光谱反射率和指数与重金属浓度联系起来,这对其他区域、时间、光谱离散化和重金属元素的可移植性有限。我们得出结论,一个重要的前进方向是更彻底地了解和模拟土壤和植物中相关的物理化学过程及其对光谱特征的影响。这将为针对个别情况的遥感应用提供深厚的基础,并允许将重金属效应与干旱或土壤盐度等其他压力因素区分开来。
1 波尔多大学-CNRS-CEA,激光强度与应用中心 (CELIA),UMR 5107,F-33405 Talence,法国 2 等离子体物理与激光研究所,大学研究与创新中心,希腊地中海大学,74100 Rethymno,克里特岛,希腊 3 希腊地中海大学工程学院电子工程系,73133 Chania,克里特岛,希腊 4 CEA、DAM、DIF,F-91297 Arpajon,法国 5 萨拉曼卡大学基础物理系,37008 Salamanca,西班牙 6 巴黎萨克雷大学,CEA、LMCE,91690 Bruyères-le-Châtel,法国 7 约克大学物理、工程与技术学院约克等离子体研究所,YO10 5DD,英国 8 巴利亚多利德大学理论、原子和光学物理系,47011 巴利亚多利德,西班牙 9 脉冲激光中心,M5 号楼,科学园,37185 Villamayor,萨拉曼卡,西班牙 10 LULI - CNRS、CEA、索邦大学、巴黎综合理工学院、巴黎综合理工学院,F-91120 Palaiseau Cedex,法国 11 普林斯顿等离子体物理实验室,普林斯顿,新泽西州 08543,美国 12 阿尔伯塔大学电气与计算机工程系,埃德蒙顿,T6G1R1 阿尔伯塔,加拿大 13 加州大学圣地亚哥分校能源研究中心,拉霍亚,CA 92093,美国 14 劳伦斯利弗莫尔国家实验室,利弗莫尔,加利福尼亚州94550,美国 15 iUNAT–拉斯帕尔马斯大学物理系,35017 拉斯帕尔马斯,西班牙 16 伦敦帝国理工学院布莱克特实验室等离子体物理组,伦敦,SW7 2AZ,英国 17 通用原子公司,加利福尼亚州圣地亚哥 92121,美国。 18 等离子体物理与激光微聚变研究所,01-497,华沙,波兰 19 等离子体物理研究所,捷克科学院,182 00,布拉格,捷克共和国 20 艾克斯马赛大学,CNRS,PIIM,F-13013 马赛,法国 21 极端光基础设施 ERIC,ELI-Beamlines 设施,25241 Dolní Brezany,捷克共和国(日期:2024 年 2 月 6 日)
我们研究了一维拓扑超导体(例如沉积在超导表面上的磁性原子链)的斐波那契准晶体(QC)排列的特性。我们发现了QC特性与Majorana Bound状态(MBS)之间的一般相互排斥的竞争:QC间隙内部没有MB,MBS在QC子gap状态中永远不会表现为QC子gap状态,并且同样,QC子gap状态也不是关键或蜿蜒的QC子gap状态。令人惊讶的是,尽管进行了竞争,但我们发现QC仍然对实现MBS实现拓扑超导性非常有益。这两者都导致在参数空间中具有MBS的其他大型非平凡区域,这些区域在晶体系统中在拓扑上是微不足道的,并增加了保护MBS的拓扑间隙。我们还发现,纤维菌质量控制的近似值显示最大的好处。因此,我们的结果促进了QC,尤其是它们的简短近似值,作为改善实现MBS的实验可能性的吸引人平台,并且通常突出了不同拓扑之间的基本相互作用。
位英语 考试 特点 , 采用多 功能 的编排 方法 , 不仅 有助 于考生 理解记 忆单 词 , 准 确掌 握词的 运用 , 而且 能够 使 考生 快 速扩
CRISPR筛查目前正在广泛的研究领域中应用,我们的实验室正在对癌细胞和胚胎干细胞进行研究。此外,我们开发了一种基于单细胞CRISPR分析后遗传破坏后随时间的表达变化来构建基因调节网络的方法。网络控制点还通过数学理论确定,公司正在使用CRIPSR系统通过多基因控制来控制细胞命运。