了解颗粒在空气界面上的运动可能会影响广泛的科学领域和应用。diamagnetic颗粒在空气 - 磁流体界面上流动,是磁体的排斥运动。在这里,我们显示了一种运动机制,其中吸引了空气 - 磁流体界面上的磁磁颗粒,并最终被困在距磁铁偏低的距离处。还已经研究了磁性颗粒的行为,并在一个统一的框架中对运动机制进行了理论,表明颗粒在空气 - 磁磁性 - 液体界面上的运动不仅受磁能的控制,而且是由液体磁性磁性远程绘制的磁性构成的曲率相互作用,并且是液体磁性磁性的磁性磁性磁性的磁性磁性,且磁性磁性的磁性。有吸引力的运动机制已应用于定向的自组装和机器人粒子引导中。
澳大利亚 18 10 比利时 1 0 瑞士 2 0 丹麦 1 0 西班牙 1 0 法国 5 5 德国 3 2 意大利 2 1 日本 46 17 香港 2 19 挪威 4 3 奥地利 3 0 美国 71 41 加拿大 8 4 英国 21 7 芬兰 3 0 新西兰 0 1 爱尔兰 0 1 以色列 13 2 瑞典 9 5 新加坡 2 2
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Micro-fabricated Surface Electrode Ion Trap with 3D-TSV Integration for Scalable Quantum Computing Jing Tao 1 , Luca Guidoni 2 , Hong Yu Li 3 , Lin Bu 3 , Nam Piau Chew 1 and Chuan Seng Tan 1* 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 2 Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, France, 75205 3 Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117685 Email: tancs@ntu.edu.sg Abstract In this paper, 3D architecture for TSV integrated Si surface ion-trap is proposed, in which the TSV and microbump technology is used to connect the surface electrodes of ion trap到底部的Si插座。伪电位模拟用于确定“平面陷阱”和“ TSV陷阱”几何形状的捕获离子高度。在两种情况下均未观察到伪能力的显着偏差。初步的微型离子陷阱芯片是特征的。所提出的技术在形式和寄生降低微型表面离子陷阱方面有希望,用于可扩展的量子计算应用。(关键字:表面离子陷阱,3D TSV集成,量子计算)简介量子计算被广泛吹捧为维持对高性能计算未来需求的最有可能的技术之一。实现量子计算机的一种有希望的方法是将悬浮在真空中的原子离子用作量子位(Qubits)来执行量子操作[1]。离子被一组产生静态(DC)和射频(RF)电场的表面电极限制在自由空间中。具有适当波长的激光束用于将离子冷却到地面振动能状态,并通过解决离子的电子能态执行量子操作。现代离子陷阱芯片促进了在SI基板上制造的大量多段表面电极,以操纵高密度离子阵列或形成多个离子捕获区[2]。离子捕获技术的关键挑战之一是以可扩展的方式将不断增加的电极号互连到外部DC/RF电源。传统的电线键合方法需要在芯片表面积上设计耗尽空间的外围粘结垫设计,并且还具有从芯片外围到被困离子的激光障碍物的缺点。使用高级3D集成技术,提议将离子陷阱芯片垂直堆叠在Si插台上,在该插座机上,将通过(TSV)和微型凹凸在其中形成垂直互连以连接表面电极。图1显示了所提出的TSV积分离子陷阱模具的示意图,该陷阱堆叠在Si插孔器上,其中一个离子被困在陷阱芯片表面上方。提出的架构提供了一个微型离子陷阱系统,其优势具有高密度电极积分能力,较小的RC延迟,紧凑的外形尺寸和芯片表面激光束的清晰可访问性。
Manuel Rodrigues (1) 、J. Bergé (1) 、D. Boulanger (1) 、B. Christophe (1) 、M. Dalin (1) 、V. Lebat (1) 、F. Liorzou (1) (1) ONERA,巴黎萨克雷大学,F-92322 Chatillon,法国,+33146734728,manuel.rodrigues@onera.fr 摘要 ONERA 物理系 50 年来一直致力于开发用于空间科学的高性能加速度计。 2017 年,由法国蔚蓝海岸天文台和 Onera 提出的 CNES MICROSCOPE 任务在基础物理学方面取得了出色的成果。 借助加速度计,它在等效原理(广义相对论的基石)测试中取得了有史以来最好的结果。 2013 年,ESA GOCE 任务搭载 6 个静电加速度计,绘制出了最佳的地球重力图。最近,两颗 JPL GFO 卫星发射升空,在 GRACE 进行 15 年的测量后,为大地测量学界提供了成果。对于未来的任务,我们将利用实验室的遗产,开发一种更紧凑的加速度计,用于微型卫星或纳米卫星上的科学研究。在概述过去几十年取得的成就之后,演讲将重点介绍未来在小型卫星或纳米卫星上大地测量和基础物理学方面的发展。
1 德国海德堡大学工程数学与计算实验室 (EMCL)、跨学科科学计算中心 (IWR)、海德堡大学,2 德国海德堡理论研究所 (HITS) 数据挖掘与不确定性量化 (DMQ)、3 澳大利亚国立大学物理研究院材料物理系,澳大利亚堪培拉,4 综合生物学中心 (CBI) 动物认知研究中心 (CRCA); CNRS,大学 Paul Sabatier – 图卢兹三世,法国图卢兹,5 麦考瑞大学生物科学系,悉尼,澳大利亚,6 蒙彼利埃进化科学研究所,CC64,蒙彼利埃大学,蒙彼利埃,法国,7 生物校园,蒙彼利埃资源影像中心,法国国家科学研究中心,INSERM,蒙彼利埃大学,蒙彼利埃,法国,8海德堡大学计算中心 (URZ),德国海德堡
常见的样品污染物,例如苯酚或鸟嘌呤盐可以错误地升高您的明显样品浓度或抑制下游反应。这就是为什么仅纯度比率就无法说明您的样本是否足够干净的整个故事。Thermo Scientific™Acclaro™样本智能技术可以识别多种不希望的物质,甚至可以识别DNA何时污染RNA样品。
然而,未解决的炎症会导致慢性炎症性疾病,例如感染,胃炎,免疫介导的疾病,神经退行性疾病,心脏疾病疾病和癌症(Chen等人(Chen等人)2018; Arooj等。2023)。
I。i ntroduction浓缩光伏(CPV)技术依赖于阳光的浓度在小(通常是mm 2至cm 2)和高效(III-V基于III-V的,通常为三连接)的细胞上。但是,这种技术成本仍然太高,无法被广泛采用。一种新兴方法包括微型化模块维度(Micro-CPV)。亚毫米多插根单元是这种创新技术的核心,因为它们可以克服使标准CPV不受欢迎的某些局限性。低温操作是高电性能和提高可靠性的关键。由于其较小的尺寸,可以用微型细胞提供更轻松的热管理策略[1]。此外,较小的细胞显示出较小的电阻损失,因此在非常高的浓度下,在理论上可以实现较高的效率。
• 虽然清洁技术制造使命承诺提高国内在交通和能源生产方面的附加值,但战略上需要激励中小微企业全面采用 ESG 做法,以便在非关税壁垒不断加强的情况下获得无忧的市场准入。我们希望从长远来看,该使命的范围将得到扩大,以覆盖更多以中小微企业为中心的行业。此外,在 ESG 方面,我们期待一个积极的框架,以推动中小微企业遵守规定,获得无阻碍的市场准入。现在,各州政府需要通过城市地方机构和工业发展公司实施循环经济计划来补充这一意图,这将增加中小微企业的机会,同时提高可持续性。