表面张力效应已知在亚毫米尺度上是主导的。在这种情况下,文献已广泛描述了基本的物理(例如,表面张力,润湿,表面质地和涂层)和毛细管力在多种应用中被利用(例如,封装,自我拾取,自我调整,毛细管密封和毛细管轴承)。由于可以使用几种刺激来控制液体弯月扫描,因此这些力主要用于开放环的微型机器人(即没有实时反馈)。然而,至少有两个不确定性的主要来源阻碍了这些力在开放循环中正常工作:接触角性疾病引起的可变性(润湿和不明式的差异)和液体所涉及量的可变性。要拒绝这些干扰,需要将成功的传感器集成和相关的高级控制方案嵌入到毛细管微生物微生物系统中。本文从三种不同的角度分析了该领域的研究贡献:表面张力效应的刺激作用(光,B场等。),范围(致动,采摘,密封等。)以及感应和控制方案。技术复杂的开发与优雅,直接的工程解决方案共处。表面张力的生物学方面不包括在本综述中。
在本文中,基于离子电活性聚合物(IEAP)的三层微型激活器的电响应考虑了在微实施行为中出现的某些现象。分析了对充电和排放过程中测得的电流的详细研究。研究了简化的等效电路的电荷,时间构成,电容和电阻。结果表明,微型演员表现出低于1 V的施加电压的线性行为。除此之外,非线性出现并与放电过程有关,尤其是以非线性方式增加的相应电阻。在此阶段,取决于先前施加的电压的累积电荷在放电过程中未完全恢复。这项研究的结果通过实验和理论结果进行了说明。
零件数频率(MHz)QCC325L-120.000 120 787 QCC325L15-125.000 125 905 QCC325L15-19.071 19.071 19.071 393 QCC325L15-20.000 20 841 20 841 QCC325L15-255.000 2555.000 25930 25930 QCC398 QCC398 QCC32555-25555-2555-2555555.000 QCC325L-3.000 3 1175 QCC325L-33.333 33.333 940 QCC325L-66.666 66.666 945 QCC325R15-100.000 100 3000 QCC570-10.000 10 968 QCC570-11.0592 11.0592 573 QCC570-12.000 12 985 QCC570-14.7456 14.7456 1338 QCC570-16.000 16 716 QCC570-2.520 2.52 1000 QCC570-20.000MHZ 20.000MHz 20.000MHz 20.000MHz 1424 QCC570-22.400 QCC570-3.2768 3.2768 1782 QCC570-3.6864 3.6864 980 QCC570-32.000 32 911 QCC570-33.000 33 972 QCC570-33.333 33.333 1937 QCC570-4.096 4.096 1000 QCC570-4.9152 4.9152 917 QCC570-40.000 40 1485 QCC570-40.900 40.9 617 QCC570-60.000 60 1000 QCC570-64.000 64 230 QCC570-7.680 7.68 985 QCC570L-11.059 11.059 50 QCC570L-11.0592 11.0592 1387 QCC570L-12.000 12 1403 QCC570L12-12.000 12 200 QCC570L-14.7456 14.7456 1373 QCC570L15-40.000 40 40 420 QCC570L-16.000 16 1930 QCC570L-16.666 16.666 16.666.666.666 926 926 926 926 926 926 926
在2024年,我们参加了2月的第一周在洛杉矶举行的MedTech会议。MedTech是一个垂直市场的市场,由于严格的监管要求,它要求提供最高的能源解决方案,从而为高级电池技术的未来提供宝贵的见解。MedTech客户正在寻找具有较高VED,较长循环寿命的电池,并且与仍然是MedTech的主要技术相比,与Li-ion电池相比,它是100%安全的。我们在许多方面就固态电池的状态和性能的演讲解释了评估客户和其他人表达的重大兴趣。我们注意到,在VED,电池容量,充电时间和成本/价格方面,我们领先于相关竞争对手。这强调了我们的发展步伐是一流的。
ICE-Cube 推进器规模非常小——其燃烧室和喷嘴的长度不到 1 毫米——因此只能使用 MEMS(微机电系统)方法来组装,借鉴微电子领域的方法。
我们很快就要庆祝微机电系统 (MEMS) 诞生 60 周年,自 Nathanson 演示谐振栅极晶体管以来。回顾过去,MEMS 领域取得了长足的发展,在 20 世纪 80 年代实现了商业化,在过去十年的物联网时代,传感器得到了广泛采用和普及。该领域也经历了迅速的发展,渗透到了各个领域。本期特刊旨在关注物理 MEMS,诚邀您撰写有关 MEMS 传感器和 MEMS 执行器的评论和原创成果。我们也欢迎报道 MEMS 新应用的文章,因为趋势需要超越设备而实现系统集成。我们感兴趣的是关于 MEMS 封装技术和挑战的评论和新成果。我们还诚邀您撰写有关 MEMS 材料开发以及 MEMS 可靠性研究的文章。
近几十年来,半导体行业一直遵循摩尔定律,大约每两年就会将计算能力提升到一个新的水平。然而,随着制造节点演进的减速,被解读为“超越摩尔”的 3D 集成开始展现出延长摩尔定律寿命的潜力。3D 集成不仅针对水平方向的晶体管或芯片集成,而且最重要的是垂直方向的集成,从而形成一种新型半导体芯片,可容纳更高的晶体管密度,随着堆栈超过单层,计算能力将实现巨大飞跃。因此,本期特刊寻求 3D 集成技术的最新进展,包括研究论文、通讯和评论文章,重点关注特定技术,包括但不限于 3D 互连、键合技术、热管理、可靠性、共封装光学器件、集成新材料和设备以及 3D 集成应用。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.13.635171 doi:Biorxiv Preprint
柔性设备的研发仍任重道远,并且充满了障碍,严重阻碍了此类系统的发展。[3] 在主要的限制因素中,我们可以观察到,迫切需要有效的策略来在柔性基板上获得导电路径。[4] 此外,即使柔性是强制性的,可拉伸基板也更受欢迎,因为便携式设备领域正在朝着可穿戴配置的方向发展。这意味着不可能将柔性和拉伸性分开。在这种背景下,在石墨烯基材料大家族中,激光诱导石墨烯应运而生[5],成为制造柔性电子设备最有前途的材料之一。[6] 然而,尽管在新基板上开发 LIG 付出了无数努力,但仍然缺乏适用于激光石墨化的可拉伸聚合物。[7] 事实上,到目前为止,还没有观察到弹性基板石墨化的证据。就弹性体聚合物家族而言,聚二甲基硅氧烷 (PDMS) 是微系统技术中最受欢迎的弹性体材料,因为它具有诱人的物理和化学特性,例如弹性、低至 220 nm 的光学透明度、可调的表面化学性质、低水渗透性但高气体渗透性和高介电性能。此外,它是一种经济高效的材料,可用于开发可靠的大规模复制技术。[8]
光刻技术在集成电路芯片制造中发挥着至关重要的作用,是半导体和微电子工业的关键核心技术之一。20世纪90年代以来,低成本、高分辨率无掩模光刻系统成为先进光刻技术研究的热点。然而,该项前沿技术的专利主要掌握在欧洲、美国、日本和韩国手中,技术壁垒较高。