无线通信向6G网络的进步需要在Terahertz(THZ)频率(0.1-10 THz)上发挥作用的天线。这对于满足日益增长的数据传输和最小延迟连接的需求至关重要。然而,常规的天线设计通常无法在这些升高频率下提供所需的带宽,增益和效率,这会限制其对6G技术的适用性。这项研究介绍了针对在THZ频段中运行的6G系统专门优化的多个椭圆形天线的设计和开发。主要目的是提高天线的性能,使其适合高频应用。天线是在Roger 5880底物上构造的,其介电常数为2.2,切线损耗为0.0009,厚度为6 µm。它精确地测量了140×100 µm²。50欧姆微带馈线会激发天线,确保最佳功率传递。模拟产生了令人鼓舞的结果,展示了-27.08 dB的回报损失(\(s_ {11} \)),这是1.25 thz(2.12-3.37 thz)的广泛操作带宽,增益为8.769 db,指标为8.6113 db,and An 89%and An 89%and An 89%。这个多斜椭圆形的天线对6G应用具有巨大的潜力,提供了可靠的解决方案,以满足即将到来的THZ通信系统的需求。其出色的性能将其定位为高速通信网络的理想候选者,推动了下一代无线技术的发展。
[2][3]作者介绍了一种锥形缝隙天线和一种对映锥形缝隙天线,通过合并六个以上的谐振来实现 UWB 响应。这种结构有许多几何参数,并且在不同频率下获得的辐射模式也不稳定。Hoods 等人 [4] 提出了一种双平面 UWB 结构,它具有小增益和不均匀的辐射模式。在 [5] 中,作者介绍了一种紧凑型 UWB 天线,其中通过两个半圆来增强带宽。在 [6] 中,通过引入一个带缝隙的附加环形结构来实现 UWB 操作。[7] 中讨论了一种基于混合缝隙馈电网络的 UWB 天线。[8] 中介绍了通过在微带馈电的接地平面上创建 UWB 特性。Shameena 等人 [9] 介绍了一种 CPW 馈电 UWB,其中使用具有许多维参数的阶梯形缝隙来实现 UWB 特性。C Vinisha 等人[10] 介绍了一种电小尺寸 CPW 馈电 UWB,其中使用环形环来获得超宽带宽。S. Nicolaou 等人在 [11] 中讨论了一种 UWB 辐射器,其槽呈指数锥形,尺寸非常大,增益很小。[12] 介绍了一种非均匀辐射、小增益 UWB 偶极天线。它提供了较差且高度失真的脉冲响应。[13] 讨论了一种适用于医学成像应用的定向 UWB,尺寸非常大,辐射方向图不均匀。然而,上述所有天线尺寸都很大或结构复杂
[1] T. Yilmaz 和 OB Akan,“60 GHz 消费类无线通信的最新进展和研究挑战”,IEEE 消费电子学报,第 62 卷,第 3 期,2016 年。[2] RC Daniels 和 RW Heath,“60 GHz 无线通信:新兴要求和设计建议”,IEEE 车辆技术杂志,第 2 卷,第 3 期,第 41-50 页,2007 年。[3] YP Zhang 和 D. Liu,“用于无线通信的高度集成毫米波设备的片上天线和封装天线解决方案”,IEEE 天线与传播学报,第 57 卷,第 3 期,2016 年。 10,第 2830-2841 页,2009 年 10 月。[4] MK Hedayati 等人,“5G 通信系统中片上天线设计以及与纳米级 CMOS 中 RF 接收器前端电路集成的挑战”,IEEE Access,第 7 卷,第 43190-43204 页,2019 年。[5] TH Jang、YH Han、J. Kim 和 CS Park,“具有非对称插入的 60 GHz 宽带低剖面圆极化贴片天线”,IEEE 天线与无线传播快报,第 19 卷,第 1 期,2011 年。 1,第 44-48 页,2020 年 1 月。[6] A. Jaiswal、MP Abegaonkar 和 SK Koul,“60 GHz 高效宽带凹陷接地微带贴片天线”,IEEE 天线与传播学报,第 67 卷,第 1 期,2020 年 1 月。 4,第 2280-2288 页,2019 年 4 月。[7] J. Zhu、Y. Yang、C. Chu、S. Li、S. Liao 和 Q. Xue,“采用低温共烧陶瓷 (LTCC) 技术的 60 GHz 高增益平面孔径天线”,2019 年 IEEE MTT-S 国际无线研讨会 (IWS),中国广州,第 1-3 页,2019 年。[8] MV Pelegrini 等人,“基于金属纳米线膜 (MnM) 的中介层用于毫米波应用”,第 11 届欧洲微波集成电路会议 (EuMIC),伦敦,2016 年,第 532-535 页,2016 年。
本论文介绍了基于交流塞曼势能的芯片捕获原子干涉仪的开发进展。原子干涉仪是一种高精度测量工具,可以检测各种类型的力和势能。本论文介绍的捕获原子干涉仪针对的是传统弹道原子干涉仪的缺点,传统弹道原子干涉仪通常高度为米级。值得注意的是,捕获原子干涉仪具有局部原子样本、可能更长的干涉相位积累时间,并有望成为更紧凑仪器的基础。本论文介绍了基于交流塞曼势能和陷阱的捕获原子干涉仪的多个开发项目:1)在芯片上生产超冷钾,2)芯片陷阱中的势能粗糙度理论,3)微波芯片陷阱设计,4)基于激光偶极子陷阱和交流塞曼力的铷原子捕获原子干涉仪。 (1) 钾具有玻色子和费米子同位素、多个“魔”磁场,而且易于射频和微波捕获,是原子干涉仪的良好候选材料。对激光冷却和捕获系统进行了升级,以提高芯片陷阱中钾原子的温度和数量。芯片冷却导致了显著的非弹性损失,从而阻止了钾玻色-爱因斯坦凝聚体的产生。(2)芯片导线缺陷的数值模拟预测交流塞曼捕获势应该比直流塞曼捕获势平滑得多:粗糙度的抑制是由于磁极化选择规则和交流趋肤效应。(3)此外,本论文对构成交流塞曼陷阱微波原子芯片构建块的直和弯微带传输线进行了一系列研究。 (4)最后,我们构建了一个基于铷原子的拉姆齐干涉仪,通过施加自旋相关的交流塞曼力,该干涉仪可以转换为原子干涉仪:利用干涉仪测量直流和交流塞曼能量偏移,并在交流塞曼力的作用下观察条纹。
尽管超导量子比特为可扩展的量子计算架构提供了潜力,但执行实用算法所需的高保真度读出迄今为止仍未实现。此外,高保真度的实现伴随着较长的测量时间或量子态的破坏。在本论文中,我们通过将两个超低噪声超导放大器集成到单独的色散通量量子比特测量中来解决这些问题。我们首先演示了一个通量量子比特,该量子比特与由电容分流 DC SQUID 形成的 1.294 GHz 非线性振荡器电感耦合。振荡器的频率由量子比特的状态调制,并通过微波反射法检测。微带 SQUID(超导量子干涉装置)放大器 (MSA) 用于提高测量灵敏度,使其高于半导体放大器。在第二个实验中,我们报告了通过共享电感耦合到由交错电容器和蛇形线电感器并联组合形成的准集总元件 5.78 GHz 读出谐振器的通量量子比特的测量结果。近量子极限约瑟夫森参量放大器 (paramp) 可大幅降低系统噪声。我们展示了使用 MSA 在读出谐振器中低至百分之一光子的读出激发水平下提高保真度和降低测量反作用的测量结果,观察到读出可见度提高了 4.5 倍。此外,在读出谐振器中低于十分之一光子的低读出激发水平下,未观察到 T 1 的降低,这可能使连续监测量子比特状态成为可能。使用 paramp,我们展示了具有足够带宽和信噪比的连续高保真读出,以解决通量量子比特中的量子跳跃。这是通过读出实现的,该读出可将读出指针状态分布的误差区分为千分之一以下。再加上能够在 T 1 时间内进行多次连续读出,允许使用预兆来确保初始化到可信状态(例如基态)。这种方法使我们能够消除由于虚假热布居引起的误差,将保真度提高到 93.9%。最后,我们使用预兆引入一个简单、快速的量子比特重置协议,而无需更改系统参数来诱导 Purcell 弛豫。
简介 鉴于对满足射频系统要求的需求日益增加,作为关键组件的循环器已成为研究的主题。传统循环器通常基于采用带状线或微带技术设计的 Y 型结形状。带状线循环器易于集成且损耗低。这种循环器拓扑结构可以通过同轴连接器连接,采用 Drop-in 技术实现或内置于表面贴装器件 (SMD)。尽管成本较高,但同轴循环器具有比其他产品更高的 EMC 屏蔽和功率处理能力。此外,Drop-in 设备处理的功率较少,并且没有 EMC 屏蔽。最后,SMD 循环器的功率处理能力低于同轴循环器,但 EMC 屏蔽比 Drop-in 更好。面对日益增长的小型化、集成化和降低成本的需求,LTCC(低温共烧陶瓷)技术是应对这些挑战的有希望的候选技术。LTCC 技术是一种通过多层结构封装集成电路的技术。它由堆叠胶带组成,可防止结点出现气隙,并降低高功率空间应用的多重击穿风险。在过去的几年中,许多已发表的研究都集中在 LTCC 循环器的设计上 [1]-[2]。然而,它们大多数都是理论上的,只有少数专注于工业用途 [3]。因此,Exens-Solutions 与 CNES、Thales TRT 和 IMT Atlantique 合作,提出了 LTCC 技术来开发用于保护有源天线的 K 波段循环器。该循环器由 Exens-Solutions 根据与 CNES 商定的规格设计。IMT Atlantique 负责循环器的制造过程。铁氧体和电介质材料带由 Thales TRT 开发。因此,本文分为四个部分。第一部分介绍 LTCC 循环器规格并详细介绍材料特性。第二部分描述了建立设计规则的试运行。第三部分讨论了 LTCC 循环器的设计步骤和模拟。制造步骤和测量结果在最后一节中报告。LTCC 环行器规格初步提出的拓扑结构采用带状线拓扑结构来设计封装在封装中的 LTCC 环行器。这种拓扑结构的优点是可以缩小环行器体积并避免金属路径受到任何损坏。如图 1 所示,在 LTCC 结构中添加了信号和接地通孔,以确保其与 SMD 表面的互连。
2014 年第 37 届信息和通信技术、电子学和微电子学国际大会(MIPRO) 微电子学、电子学和电子技术纳米技术,从近代历史到(不)可预测的未来 - 特邀论文 1 J. Turkovic 基于低温(α)和高温(β)GeS 2 晶相的簇共存的光谱证据,位于玻璃状二硫化锗基质中 7 V. Mitsa、R. Holomb、G. Lovas、M. Veres、M. Ivanda、T. Kovach 银胶体纳米粒子的合成和表征及其在表面增强拉曼光谱中的应用 11 L. Mikac、M. Ivanda、M. Gotic、T. Mihelj 碲酸盐玻璃的拉曼光谱 15 H. Gebavi、D. Ristic、V. Djerek、L. Mikec、M. Ivanda、D.用于尖端光子学应用的米兰涂层球形微谐振器 18 D. Ristic、M. Mazzola、A. Chiappini、C. Armellini、A. Rasoloniaina、P. Féron、R. Ramponi、G.N.Conti、S. Pelli、G.C.Righini、G. Cibiel、M. Ivanda、M. Ferrari 使用 THz 时域光谱检查硅材料特性 22 B. Pejcinovic 微带宽度和退火时间对微尺度石墨烯 FET 特性的影响 27 M. Poljak、M. Wang、S. Zonja、V. Djerek、M. Ivanda、K.L.Wang, T. Suligoj 具有优化发射极和电介质的石墨烯基晶体管 33 S. Venica, F. Driussi, P. Palestri, L. Selmi 厚度低于 20 nm 的双栅极锗 MOSFET 中受声子限制的空穴迁移率 39 V. Ivanic, M. Poljak, T. Suligoj 20 nm 栅极体和 SOI FinFET 之间的 RF 性能比较 45 S. Krivec, H. Prgic, M. Poljak, T. Suligoj CMOS 二进制加法器老化的模拟研究 51 T. An, C. Hao, L. Alves de Barros Naviner 多故障下并发检查电路可靠性评估的分析方法 56 T. An, K. Liu, L. Alves de Barros Naviner CMOS 乘法器结构的合成使用多功能电路 60 C. Popa
摘要:与基于可分离的复杂希尔伯特空间的“经典”量子力学相比,该论文研究了量子信息后量子不可分性的理解。相应地“可区分性 /无法区分性”和“古典 /量子”的两个反对意义在量子不可区分性的概念中隐含可用,可以解释为两个经典信息的两个“缺失”位,这些信息将在量子信息传递后添加,以恢复初始状态。对量子不可区分性的新理解与古典(Maxwell-Boltzmann)与量子(Fermi-Dirac或Bose-Einstein)统计的区别有关。后者可以推广到波函数类(“空”量子量),并在希尔伯特算术中详尽地表示,因此可以与数学基础相连,更确切地与命题逻辑和设置理论的相互关系相互关联,共享了布尔代数和两种抗发码的结构。关键词:Bose-Einstein统计,Fermi-Dirac统计,Hilbert Arithmetic,Maxwell-Boltzmann统计,Qubit Hilbert Space,量子不可区分性,量子信息保存,Teleportation