抽象的连续感染和重新污染是根管处理中非常重要的问题。为此,为了完成成功,根管处理的关键目标是去除感染根管中的微生物和组织残基。尽管鉴于当代研究而不是过去的研究,但在对根管系统的分析中取得了巨大进展,这表明化学力学制备过程由于其复杂的解剖结构而无法完全清洁和对根管的完全消毒。灌溉溶液用于不同的品种和不同的目的,以溶解称为涂片的层并减少受感染根管中的细菌种群。本综述的目的是总结有关牙髓治疗中使用的灌溉解决方案的文献信息和集体数据。关键字:牙髓,根管灌溉剂,根管制备,涂片层
摘要:随着航空中的发展技术,向更多电气系统的过渡日益增加。因此,对电池开发的研究加速了。如今,由于其能量重量比,锂离子(锂离子)电池更为广泛,例如与其他电池技术相比,不工作时的自我释放率较低。电池将储存的化学能转换为电能,并且由于化学反应而释放了热量。释放的热量会对电池的寿命产生负面影响,充电/放电时间和电池输出电压。必须正确建模电池以查看这些负面影响并及时干预。以这种方式,电池中可能发生的负面情况可以在正确的时间进行干预,而不会发生任何事件。在这项研究中,无人机(UAV)由锂离子电池提供动力。使用电气等效电路在MATLAB/SIMULINK环境中进行模拟。考虑到温度,充电状态(SOC),细胞动力学和操作功能,创建了一个详细的模型。要估计电池的健康状态(SOH),必须知道电阻值。借助仿真模型获得了锂离子电池等效电路中的电阻和容量值。因此,可以通过获得的结果准确预测锂离子电池的SOH。关键词:锂离子,无人机,电池模型,仿真。
在本研究中,通过使用分析质量(QBD)方法(QBD)方法,研究了一种弱基本的细胞周期蛋白依赖性激酶4/6抑制剂的pH依赖性溶解度和溶解(PB),用于反向相位高性能液相色谱(RP-HPLC)方法。使用RP-HPLC量化PB的集成分析方法是由三级三阶段的盒子– Behnken设计设计的,具有数值和图形优化。在体外微滴度上,在生物相关的培养基中进行了pH换移实验,以预测Pb依赖pH的药物相互作用(DDI)行为。RP-HPLC方法利用盒子 - Behnken三阶段三阶段设计开发了针对PB的特定的。优化的方法导致Pb的有效和更快的色谱分离,其保留时间值较低,并具有令人满意的峰对称性和低峰尾部。基于体外微渗透研究,观察到PB具有典型的弱碱基pH依赖性溶解度和溶解行为,其释放范围从98.96%到102.66%,在模拟的胃液pH 1.2中,通过添加了通过添加禁食状态的模拟肠道液体pH 6.5。总体而言,我们的发现表明,体外微溶解方法可以准确预测pH依赖性DDI的强度,并且在临床DDIS研究之前使用这些技术的使用可能允许对体内pH依赖性药物的吸收充分预测。
使液滴破碎。一般来说,液滴的产生方法主要有两种:膜乳液法16 – 18 和微流体法。膜乳液法是将分散流体直接注入连续流体中,这样可以有效地产生大量液滴。然而,由于剪切应力只能由分散流体来调节,因此膜乳液法很难控制液滴尺寸并获得高效的包封率。对于微流体,微加工可用于制造微流体装置,通过控制沿微通道的分散相和连续相的液流速率,可以高效地批量生产微液滴,并且液滴尺寸精度高,封装效率高。在微流体中,液滴的生成基于两个剪切应力源,使液滴在微通道连接处破碎:一个来自连续流体,另一个来自分散流体的表面润湿性和微通道表面条件之间的差异。因此,微流体对于双乳液液滴生成比膜乳液更有效。微流体中用于产生液滴的微通道可分为 3 种类型:T 型连接微通道、流动聚焦微通道和共流微通道。T 型连接微通道 19 – 21 是最简单的微通道,其中连续相沿主微通道流动,分散相沿微通道流动。
经历了从宏观到微观或纳米级原型的超大规模集成(如 VLSI)的范式转变,以提高效率、提高吞吐量和增加功率密度。12 因此,为了提高效率,人们也在小型化和工艺强化方面观察到大量研究活动,这些研究活动更为广泛使用的商业能量收集器,如电池、14,15 光伏电池 16 或燃料电池 17,18。特别是自从 18 世纪威廉·格罗夫爵士 19 将化学能转化为电能的开创性发明以来,燃料电池(FC)尽管遭遇了许多挫折,但还是取得了令人瞩目的进步 20。21 例如,FC 作为孤立或分布式电源的效用现在已经转化为几兆瓦的发电厂。 17 由聚合物电解质膜、磷酸、甲醇或碱组成的各种燃料电池已经以不同的长度和性能规模出现,不仅为能源密集型火箭提供动力,还用于运行微型微型发射器或生物医学设备。22 – 25 目前,燃料电池中使用的燃料是氢气 (H 2 )、甲醇