直接评估患者样本在癌症治疗中具有前所未有的潜力。液体活检中的循环肿瘤细胞 (CTC) 是临床中快速发展的原发细胞来源,是实时揭示肿瘤信息的功能分析的理想候选者。然而,缺乏允许直接从液体活检样本中直接主动询问 CTC 的常规方法,这是液体活检在临床环境中转化应用的瓶颈。为了解决这个问题,我们提出了一种使用微流体涡旋辅助电穿孔系统的工作流程,该系统设计用于对从血液中纯化的 CTC 进行功能评估。通过对野生型 (HCC827 wt) 和吉非替尼耐药 (HCC827 GR6) 非小细胞肺癌 (NSCLC) 细胞进行药物反应分析来评估对该方法的验证。被困在微尺度涡旋中的 HCC827 细胞被电穿孔以依次将药物输送到细胞溶胶中。使用自动单细胞图像荧光强度算法,对两种细胞系的电穿孔条件进行了表征,以促进多种药物的递送。能够以高纯度收集掺入血液以模拟耐药 CTC 的 HCC827 GR6 细胞,表明该装置能够最大限度地减少下游敏感细胞检测的背景细胞影响。使用我们提出的工作流程,恢复吉非替尼敏感性的药物组合反映了预期的细胞毒性反应。总之,这些结果代表了一种微流体多药筛选面板工作流程,可以实现对患者 CTC 的原位功能询问,从而加速液体活检的临床标准化。
引言:液体电介质和绝缘聚合物是柔性电子器件的组成部分[1]–[4]。此外,微流体与微电子技术的集成为高频电子系统开辟了新的研究和开发领域。例如,过去十年来,许多研究都展示了通过流体调节天线输出频率、辐射方向图和极化的方法[5]–[14]。人们还利用流体研究了微波元件的频率调谐,包括滤波器[15],[16]、移相器[17],[18]、功率分配器[19],[20]和振荡器[21]。尽管前文提到流体电子学方面的研究成果日益增多,但关于用于实现这些系统的各种电介质流体和聚合物化合物的介电常数的公开数据却非常有限。在缺乏此类数据的情况下,研究人员通常依靠在某一频率下收集的介电常数数据来近似其设备在其他频率下的响应。直到最近,才开始出现关于感兴趣的介电流体宽带响应的介电光谱研究[22]。在本文中,我们报告了宽带复介电常数
修读“项目报告”的学生须修读以下七门选修学科单元/科目,以获得21 学分;修读“实习及报告”的学生须修读以下八门选修学科单元/科目,以获得24 学分︰ 集成电路研究方法和应用选修45 3 数字集成电路选修45 3 数据转换器集成电路设计选修45 3 柔性交流输电系统选修45 3 电源管理集成电路设计选修45 3 生物医学工程专题选修45 3
Elektrode 16旨在容纳3至8岁的骑手,并且具有高度可调的组件使其成为成长中的骑手的理想电动自行车。座椅中的可调节性超过4英寸,Elektrode 16可以舒适地适合37英寸至55英寸的儿童。用橡胶垫的折叠钢脚踏板在Elektrode 16上提供刚性和多功能性,从而使自行车轻松地转换为平衡自行车,并简单地折叠。孩子们可以学习使用Elektrode 16作为自行车的平衡自行车,而没有电动机摩擦/阻力,然后毕业于使用fotpegs和电动机/油门。车把设计促进了直立的骑行位置,而无需损害膝盖空间,随着孩子的成长提供额外的空间,并有了普通大小的车把和座椅,父母将有能力在他们认为合适的情况下更改和定制孩子的自行车。
*其他法案所需的许可证触发IAA OGD参与者| Illustrative – some components would not apply to same project YESAA – Yukon Environmental and Socio-Economic Assessment Act / MVRMA – Mackenzie Valley Resource Management Act / MBCA – Migratory Birds Convention Act / IBWTA – International Boundary Waters Treaty Act / CPRA – Canadian Petroleum Resource Act / Offshore Accords – Canada – NS and NFLD Offshore Accords / CEPA – Canadian Environmental Protection Act / Nuppaa - Nunavut计划和项目评估法(NUPPAA)< / div>
摘要 电活性聚合物的驱动和传感应该是柔性 MEMS 的一个机会,但它们的微加工和集成仍不成熟。人们仍期待一些创新材料和微加工工艺。本文首次全面阐述了聚合物微传感器 (MT),包括集成和操作。制造工艺依赖于市售的聚(3,4-乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)导电墨水,涂在柔性 SU-8 光刻胶微芯片上。演示了由不同形状的可单独寻址 MT 组成的复杂柔性单片单元的批量制造。所得聚合物 MT 在露天表现出非常有前途的弯曲驱动和应变传感特性。值得注意的是,与用激光切割制造的材料相比,微加工工艺对性能没有影响。这项工作为柔性 MEMS 的开发铺平了道路,用于软微机器人、医疗和空间应用中的微流体。
介电微球内的光能流通常与光波矢量同向。同时,如果微球中的光场与高质量空间本征模式(回音壁模式 - WGM)之一共振,则阴影半球中会出现反向能量流区域。由于增加了光学捕获潜力,该区域具有相当大的实际意义。在本文中,我们考虑了一个沿粒子直径制造的带有充气单针孔的穿孔微球,并对纳米结构微球中 WGM 激发的特性进行了数值分析。针孔隔离了共振模式的能量回流区域,并将穿孔微球变成了高效的光镊。据我们所知,这是第一次揭示 WGM 共振时针孔中回流强度的多次增强,并讨论了其操纵方式。