• 金县图书馆服务 • 东区青年服务 (YES) • 当地小联盟组织 • WAVE 水上运动 • 华盛顿湖学区 公园和娱乐部拥有约 75 名全职员工和 200 多名季节性/兼职人员。该部门有六个运营部门,包括娱乐、参与(文化艺术、营销和传播、全市客户服务和特殊活动许可)、公园运营、设施、公园规划和管理 雷德蒙德公园和娱乐使命:公园和娱乐部的使命是创造、维护和增强可持续的、无障碍的体验和空间,通过娱乐、公园和步道、艺术、活动、客户服务和设施管理,培养归属感并促进幸福感。 雷德蒙德公园和娱乐愿景:作为管家,我们通过培育创新、可持续和包容的体验和空间来丰富生活,从而服务和连接雷德蒙德。
在2023年2月10日的第8届巴厘岛流程部长级会议上,召回并重申了在2016年和2018年的部长宣言和联合主席声明中提出的原则和方向,并认识到2018年合作策略的持久优先级,以及合作的新优先事项,以及合作的新优先级,对20223 ADELAIDE策略的更新范围进行了重新设计,以重新设计与合作的策略,并巩固了合作的策略,并与之合作,并与之合作,并与之合作,并与之合作,并与合作的策略相关联,并与之相关。自建立以来的巴厘岛进程超过20年。
在人口增长和气候变化的背景下,消费量增加和农作物产量下降威胁着粮食安全。为了减轻这些威胁,可以采用植物基因工程来创造产量和营养价值更高、能够抵抗疾病和干旱等生物和非生物胁迫的作物。尽管基因组编辑领域最近取得了进展,但大多数植物物种仍然难以进行基因工程,因为植物细胞壁坚硬,尺寸排阻严格,这对生物分子向植物细胞的有效运输提出了挑战。目前将 DNA 输送到植物中的常用方法限制了可转化植物物种的范围,导致转基因整合不受控制,因此需要对编辑植物进行监管审查,将其视为转基因生物 (GMO),这个过程漫长而昂贵。因此,开发一种无致病性、非整合性、物种独立的输送工具将极大地推动农业生物技术的发展。在本次研讨会上,我将介绍一种纳米材料平台的开发,该平台可以高效地将基因输送到模型和农业相关作物植物中,无需机械辅助,以无毒、无整合的方式;这些特性的组合是现有植物转化方法无法实现的。我将讨论如何对单壁碳纳米管进行化学修饰,以装载和递送 DNA 到植物细胞中,从而在烟草、芝麻菜、小麦和棉花等各种植物物种中表达功能性蛋白质。在成熟植物中实现了质粒 DNA 的有效递送和瞬时表达,特别是没有将转基因整合到植物基因组中,这一特性可以减轻对转基因植物的监管监督。本次研讨会还阐明了纳米粒子穿过植物细胞壁的基本原理。我将讨论纳米粒子的物理化学特性(大小、形状、纵横比和硬度)对植物细胞吸收的影响,我们利用 DNA 纳米结构的易编程性系统地研究了这些影响。重要的是,确定最大植物细胞吸收的最佳纳米材料参数可以合理设计纳米材料。这些发展展示了纳米材料在解决植物基因工程的主要瓶颈方面的独特能力,以实现可持续的粮食安全未来。
第1阶段的重点是对大阿德莱德地区计划讨论文件的出版,吸收和理解(讨论文件)。讨论文件概述了委员会在2050年及以后建立对大阿德莱德的愿景时的关键领域。它包含重要的预测,趋势和增长分析,在计划该地区的未来时必须考虑。这是一份强大的基于证据的文件,启发了与所有利益相关者以及投资塑造大阿德莱德未来的对话。
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
页首插图——约翰·弗雷德里克·哈特兰夫特将军,1 斯特德曼堡战役 4 AC 休德科佩少校,23 弗吉尼亚州彼得斯堡马洪堡纪念碑,60 战场委员会,63 斯特德曼堡纪念碑,§8 AP 邦联老兵山营地,73 米尔顿·A·恩比克先生,7 (j 梅布尔·伊丽莎白·琼斯小姐,75 西沃德·W·琼斯先生,77 斯特德曼堡照片,7g
Berry相[1]通过绝热循环过程后获得的相位揭示了量子波函数的几何信息,它的概念为理解许多材料的拓扑性质奠定了基础[2–13]。Berry相理论建立在纯量子态上,例如基态符合零温统计集合极限的描述,在有限温度下,密度矩阵通过将热分布与系统所有状态相关联来描述量子系统的热性质。因此,将Berry相推广到混合量子态领域是一项重要任务。已有多种方法解决这个问题[14–21],其中Uhlmann相最近引起了广泛关注,因为它已被证明在多种一维、二维和自旋j系统中在有限温度下表现出拓扑相变[22–26]。这些系统的一个关键特征是 Uhlmann 相在临界温度下的不连续跳跃,标志着当系统在参数空间中穿过一个循环时,底层的 Uhlmann 完整性会发生变化。然而,由于数学结构和物理解释的复杂性,文献中对 Uhlmann 相的了解远少于 Berry 相。此外,只有少数模型可以获得 Uhlmann 相的解析结果 [ 22 – 30 ] 。Berry 相是纯几何的,因为它不依赖于感兴趣量子系统时间演化过程中的任何动力学效应 [ 31 ] 。因此,Berry 相理论可以用纯数学的方式构建。概括地说,密度矩阵的 Uhlmann 相是从数学角度几乎平行构建的,并且与 Berry 相具有许多共同的几何性质。我们将首先使用纤维丛语言总结 Berry 相和 Uhlmann 相,以强调它们的几何特性。接下来,我们将给出玻色子和费米子相干态的 Uhlmann 相的解析表达式,并表明当温度趋近于零时,它们的值趋近于相应的 Berry 相。这两种相干态都可用于构造量子场的路径积分 [32 – 37]。虽然单个状态中允许有任意数量的玻色子,但是泡利不相容原理将单个状态的费米子数限制为零或一。因此,在玻色子相干态中使用复数,而在费米子相干态中使用格拉斯曼数。玻色子相干态也用于量子光学中,以描述来自经典源的辐射 [38 – 41]。此外,相干态的Berry相可以在文献[ 42 – 45 ]中找到,我们在附录A中总结了结果。我们对玻色子和费米子相干态的 Uhlmann 相的精确计算结果表明,它们确实携带几何信息,正如完整概念和与 Berry 相的类比所预期的那样。我们将证明,两种情况下的 Uhlmann 相都随温度平稳下降,没有有限温度跃迁,这与先前研究中一些具有有限温度跃迁的例子形成鲜明对比 [ 22 – 30 ] 。当温度降至零度时,玻色子和费米子相干态的 Uhlmann 相接近相应的 Berry 相。我们对相干态的结果以及之前的观察结果 [ 22 , 24 , 26 ] 表明,在零温度极限下,Uhlmann 相还原为相应的 Berry 相。