摘要心肌细胞在心脏病中起着关键作用,但知识较少,尤其是在产前阶段。在这里,我们通过整合单细胞RNA测序,空间转录组学和配体 - 受体相互作用信息来表征人类产前心肌细胞,概念后6.5-7周。使用用于剖析细胞类型异质性,定位细胞类型并探索其分子相互作用的计算工作流量,我们识别了八种类型的发育中的心肌细胞,与人类发育细胞中的含量相比,这是两倍以上。这些在细胞周期活性,线粒体含量和连接蛋白基因表达方面具有较高的变异性,并且分布在心室中,包括流量段和心房,包括Sinoatrial node。此外,心肌细胞配体受体串扰主要具有非心脏细胞类型,包括与心脏病相关的途径。因此,早期产前人类心肌细胞是高度异质性的,并具有独特的位置依赖性特性,具有复杂的配体受体串扰。进一步的发育动力可能会引起新的疗法。
人类诱导的多能干细胞心肌细胞(HIPSC-CMS)基于具有显着影响的心血管研究的开创性技术。他们为各种应用提供了可再生的人类心肌细胞来源,包括体外疾病建模和药物毒性测试。心脏钙调节在心肌细胞中起着至关重要的作用,并且在心血管疾病中通常失调。由于人类心脏组织的可用性有限,钙处理及其调控最常在动物模型的背景下进行研究。HIPSC-CM可以为人类生理和病理生理学提供独特的见解,尽管与成人心肌细胞相比,剩余的限制是这些细胞的相对不成熟,因此,该领域是迅速发展的技术来提高hipsc-CM的成熟度,进一步确立其在心血管研究中的地位。这篇评论介绍了心肌细胞钙循环和HIPSC技术的基础,并将详细描述我们当前对HIPSC-CMS钙的理解。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年1月13日。 https://doi.org/10.1101/2023.01.12.523677 doi:biorxiv Preprint
1 德国海德堡大学曼海姆大学医学中心(UMM)医学院第一医学系,邮编 68167 曼海姆;rujia.zhong@medma.uni-heidelberg.de (RZ);schimanski.t@gmail.com (TS);feng.zhang@medma.uni-heidelberg.de (FZ);huan.lan@medma.uni-heidelberg.de 或 lh6402196@126.com (HL);alyssa.hohn@web.de (AH);qiang.xu@medma.uni-heidelberg.de (QX);mengying.huang@medma.uni-heidelberg.de (MH);zhenxing.liao@medma.uni-heidelberg.de (ZL);lin.qiao@medma.uni-heidelberg.de (LQ); zhen.yang@medma.uni-heidelberg.de (ZY); yingrui.li@medma.uni-heidelberg.de (YL); zhihan.zhao@medma.uni-heidelberg.de (ZZ); xin.li@medma.uni-heidelberg.de (XL); roselena1996@gmail.com (LR); sebastian9876@googlemail.com (SA); lasse-maywald@web.de (LM); jonasnelsonmueller@googlemail.com (JM); hendrik.dinkel@yahoo.de (HD); yannick.xi@medma.uni-heidelberg.de (YX); siegfried.lang@umm.de (SL); ibrahim.akin@umm.de (IA) 2 DZHK(德国心血管研究中心),合作伙伴网站,68167 曼海姆,德国; narasimha.swamy@mdc-berlin.de (NS); mandy.kleinsorge@gwdg.de (MK); sebastian.dieck@mdc-berlin.de (SD); lukas.cyganek@gwdg.de (LC) 3 西南医科大学心血管研究所,教育部医学电生理重点实验室,四川省医学电生理重点实验室,泸州 646000,中国 4 苏黎世大学心脏中心心脏病学系,Rämistrasse 100,8091 苏黎世,瑞士;ardan.saguner@usz.ch (AS); first.duru@usz.ch (FD) 5 海德堡大学人类遗传学研究所人类遗传学系,69120 海德堡,德国; johannes.jannsen@uni-heidelberg.de 6 马克斯·德尔布吕克分子医学中心,13125 柏林,德国 7 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,37075 哥廷根,德国 8 波鸿鲁尔大学贝格曼希尔大学医院,44789 波鸿,德国;ibrahim.elbattrawy2006@gmail.com * 通讯地址:xiaobo.zhou@medma.uni-heidelberg.de;电话:+49-621-383-1448;传真:+49-621-383-1474 † 这些作者对本文的贡献相同。‡ 这些作者为高级作者。
*通讯:tamer m a Mohamed,博士,路易斯维尔大学分子心脏病学研究所,119f室,南普雷斯顿街580号,肯塔基州路易斯维尔,肯塔基州40202,美国,电话:5028528428#这些作者同样为作者贡献R.R.E.A.做出了贡献。和A.M.S. :分子和细胞数据,手稿写作以及手稿的最终批准的实验设计,收集和分析; Q.O. :心脏切割,染色和成像; X-L.T。 :猪和大鼠手术,病毒注射,超声心动图;多发性硬化症。 和K.M.K. :超声心动图和MRI分析; Y.G.,Y.H.和Y.N. :小鼠手术和病毒注射。 L.M.,P.K.L.和B.G.H. :代谢分析; K.C.和R.T。:生物信息学分析; B.M.A. 和J.S. :电生理分析; H.R.J.,A.S.,Z.I.和S.H. :组织学和分析,包括染色,成像和定量。 D.J.C. 在血浆中设计并进行了毒性测定。 A.S.E. :MRI成像定量; K.N.I和D.S. :构思,设计并提供了早期实验的资金; R.B. :大鼠和猪实验的设计和监督; T.M.A.M. :整体工作的概念和设计,并提供了资金。 所有作者都为手稿撰写和最终批准做出了贡献。和A.M.S.:分子和细胞数据,手稿写作以及手稿的最终批准的实验设计,收集和分析; Q.O.:心脏切割,染色和成像; X-L.T。:猪和大鼠手术,病毒注射,超声心动图;多发性硬化症。和K.M.K.:超声心动图和MRI分析; Y.G.,Y.H.和Y.N.:小鼠手术和病毒注射。L.M.,P.K.L.和B.G.H. :代谢分析; K.C.和R.T。:生物信息学分析; B.M.A. 和J.S. :电生理分析; H.R.J.,A.S.,Z.I.和S.H. :组织学和分析,包括染色,成像和定量。 D.J.C. 在血浆中设计并进行了毒性测定。 A.S.E. :MRI成像定量; K.N.I和D.S. :构思,设计并提供了早期实验的资金; R.B. :大鼠和猪实验的设计和监督; T.M.A.M. :整体工作的概念和设计,并提供了资金。 所有作者都为手稿撰写和最终批准做出了贡献。L.M.,P.K.L.和B.G.H.:代谢分析; K.C.和R.T。:生物信息学分析; B.M.A.和J.S.:电生理分析; H.R.J.,A.S.,Z.I.和S.H.:组织学和分析,包括染色,成像和定量。D.J.C. 在血浆中设计并进行了毒性测定。 A.S.E. :MRI成像定量; K.N.I和D.S. :构思,设计并提供了早期实验的资金; R.B. :大鼠和猪实验的设计和监督; T.M.A.M. :整体工作的概念和设计,并提供了资金。 所有作者都为手稿撰写和最终批准做出了贡献。D.J.C.在血浆中设计并进行了毒性测定。A.S.E. :MRI成像定量; K.N.I和D.S. :构思,设计并提供了早期实验的资金; R.B. :大鼠和猪实验的设计和监督; T.M.A.M. :整体工作的概念和设计,并提供了资金。 所有作者都为手稿撰写和最终批准做出了贡献。A.S.E.:MRI成像定量; K.N.I和D.S.:构思,设计并提供了早期实验的资金; R.B.:大鼠和猪实验的设计和监督; T.M.A.M.:整体工作的概念和设计,并提供了资金。所有作者都为手稿撰写和最终批准做出了贡献。
编码基因的组蛋白中的体细胞突变导致表观遗传景观的严重改变。弥漫性内在的蓬托胶质瘤(DIPG)是儿科高级神经胶质瘤(PHGG),是治疗最具挑战性的癌症之一,只有1%的生存5年。由于脑干中的位置,DIPGs很难切除并迅速变成致命疾病。超过80%的DIPGS赋予编码组蛋白3变体(H3.3或H3.1/H3.2)的基因中的突变,并在27(H3K27M)的位置将赖氨酸替代为蛋氨酸取代。这会导致H3K27三甲基化的全球降低,H3K27乙酰化增加以及基因表达的广泛致癌变化。表观遗传修饰的药物出现为有希望的候选DIPG,其中组蛋白脱乙酰基酶(HDAC)抑制剂在临床前和临床研究中占据主导地位。但是,一些数据显示DIPG对最研究的HDAC抑制剂Panobinostat的抗性不断发展,并强调了进一步研究其作用机理的必要性。一项新的有力研究线探索了可以靶向表观遗传诱导的DIPG染色质变化并增强单个药物的抗癌反应的多种抑制剂的同时使用。在这篇综述中,我们总结了针对旨在靶向表观遗传失调的表达H3K27M的PHGG的治疗方法,并突出了有希望的组合药物治疗。我们评估了PHGGS临床试验中已经在临床试验中的表观遗传药物的有效性。对H3K27M-表达PHGG的表观遗传脆弱性的不断扩展的理解提供了新的特定于肿瘤的靶标,为治疗提供了新的可能性,并希望为这种致命的疾病提供预防。
作者的完整清单:Meek,Claire;剑桥大学,代谢科学研究所; Addenbrooke医院,沃尔夫森糖尿病和内分泌部和临床生物化学。Oram,Richard A;皇家德文郡和埃克塞特医院,糖尿病研究系麦当劳,蒂莫西J;皇家德文郡和埃克塞特医院,糖尿病研究系; Denice糖尿病研究系Feig皇家德文郡和埃克塞特NHS基金会信托基金;西奈山医院 - 蒙特利尔哈特斯利,安德鲁·T;皇家德文郡和埃克塞特医院,糖尿病研究部墨菲,海伦R;东安格利亚大学,诺里奇医学院;伦敦国王学院,妇女和儿童健康系; Addenbrooke医院,沃尔夫森糖尿病和内分泌诊所Oram,Richard A;皇家德文郡和埃克塞特医院,糖尿病研究系麦当劳,蒂莫西J;皇家德文郡和埃克塞特医院,糖尿病研究系; Denice糖尿病研究系Feig皇家德文郡和埃克塞特NHS基金会信托基金;西奈山医院 - 蒙特利尔哈特斯利,安德鲁·T;皇家德文郡和埃克塞特医院,糖尿病研究部墨菲,海伦R;东安格利亚大学,诺里奇医学院;伦敦国王学院,妇女和儿童健康系; Addenbrooke医院,沃尔夫森糖尿病和内分泌诊所
信号换能器和转录3(STAT3)的激活因子在癌症的进展中的关键作用被认可,在癌症的进展中,它经常被上调或组成性地过度活化,有助于肿瘤细胞的增殖,生存和迁移,以及血管生成,以及血管生成以及抗肿瘤免疫的血管生成和抑制。鉴于癌症中STAT3活性失调的无处不在,长期以来,它一直被认为是抗癌疗法发展的极具吸引力的靶标。 然而,靶向STAT3的努力已被证明是特别具有挑战性的,这可能是由于转录因子缺乏目标酶活性,并且在历史上被认为是“不可能的”。 针对STAT3的小分子抑制剂受到选择性和效力不足的限制。 最近,已经开发出选择性靶向STAT3蛋白降解的治疗方法,提供了不依赖于上游途径或直接竞争抑制STAT3蛋白的新型策略。 在这里,我们回顾了这些新兴方法,包括靶向嵌合体(Protac)剂的STAT3蛋白水解以及化学稳定的反义分子的临床前和临床研究,例如临床剂AZD9150。 这些治疗策略可能会牢固地降低致癌STAT3的细胞活性,并克服较不选择小分子的历史局限性。鉴于癌症中STAT3活性失调的无处不在,长期以来,它一直被认为是抗癌疗法发展的极具吸引力的靶标。靶向STAT3的努力已被证明是特别具有挑战性的,这可能是由于转录因子缺乏目标酶活性,并且在历史上被认为是“不可能的”。针对STAT3的小分子抑制剂受到选择性和效力不足的限制。最近,已经开发出选择性靶向STAT3蛋白降解的治疗方法,提供了不依赖于上游途径或直接竞争抑制STAT3蛋白的新型策略。在这里,我们回顾了这些新兴方法,包括靶向嵌合体(Protac)剂的STAT3蛋白水解以及化学稳定的反义分子的临床前和临床研究,例如临床剂AZD9150。这些治疗策略可能会牢固地降低致癌STAT3的细胞活性,并克服较不选择小分子的历史局限性。
摘要 心肌细胞大量死亡是心血管疾病的一大特征,由于心肌细胞的再生能力有限,其死亡调控受到广泛关注。心肌细胞死亡机制复杂,尚未阐明,已知以凋亡、坏死等多种形式出现。在缺血性心脏病中,心肌细胞凋亡和坏死以两种程序性形式(内在和外在途径)出现,占细胞死亡的很大一部分。为了修复受损的心肌细胞,人们尝试了多种干细胞疗法。然而,尽管干细胞具有许多积极作用,但较低的植入率和存活率明显限制了其在临床治疗中的应用。为了解决这些挑战,可以在干细胞中引入所需基因,以增强其能力并提高其治疗效率。此外,随着基因组工程技术的飞速发展,靶基因的更安全、更稳定的传递以及基因的更精确的删除已成为可能,这促进了干细胞的基因改造。因此,受损心脏组织的干细胞治疗有望进一步改善。本综述介绍了心肌细胞死亡、用于心脏修复的干细胞治疗以及基因组编辑技术。此外,我们还介绍了在心肌梗死模型中结合基因组编辑技术的最新干细胞疗法。
在过去十年中,在识别与临床疾病相关的遗传异常方面取得了巨大进展。新的实验平台将遗传变异与细胞和器官行为紊乱以及致心律失常心脏表型出现的潜在机制联系起来。诱导性多能干细胞衍生心肌细胞 (iPSC-CM) 的开发标志着在患者特定背景下研究遗传疾病的重要进展。然而,iPSC-CM 技术的重大局限性尚未得到解决:1) 看似相同的基因型扰动中的表型变异性,2) 低通量电生理测量,以及 3) 不成熟的表型可能会影响转化为成人心脏反应。我们已经开发出一种旨在解决这些问题的计算方法。我们应用了我们最近的 iPSC-CM 计算模型来预测 40 种 KCNQ1 遗传变异的致心律失常风险。将 I Ks 计算模型拟合到每个突变的实验数据,并在 iPSC-CM 模型群中模拟每个突变的影响。使用一组已知临床长 QT 表型的 15 个 KCNQ1 突变测试集,我们开发了一种基于致心律失常标志物对 KCNQ1 突变影响进行分层的方法。我们利用此方法预测其余 25 个临床意义不明的 KCNQ1 突变的严重程度。在突变扰动后,在 iPSC-CM 模型群中观察到了巨大的表型变异性。一个关键的新颖之处是我们报告了个体 KCNQ1 突变模型对成人心室心肌细胞电生理学的影响,从而可以预测突变对整个衰老过程的影响。这是将 iPSC-CM 模型中的预测反应转化为成人心室肌细胞在相同基因突变情况下的预测反应的第一步。总体而言,本研究提出了一种新的计算框架,可作为一种高通量方法,根据表型可变人群中的致心律失常行为来评估基因突变的风险。