如图2所示,骨骼重塑,骨骼在成年骨骼中不断重塑,这是通过骨质化的破骨细胞和形成骨成骨细胞的协调和顺序作用。这些细胞起作用可修复微塑料并适应骨骼结构满足机械和代谢需求。骨细胞>占所有骨细胞的95%,调节骨骼重塑。成骨细胞源自间充质干细胞(MSC),专门产生细胞外骨基质,包括I型胶原蛋白和非胶原蛋白,包括骨环钙蛋白,骨tec蛋白,骨修蛋白和骨4。随后通过沉积羟基磷灰石的沉积将骨基质矿化和僵硬。人体钙的约95%掺入骨基质中。破骨细胞源自巨型和单核细胞谱系的造血干细胞(HSC)。从前体细胞向活化的多核细胞的分化至关重要地取决于作用于整骨蛋白等级的核因子kappa b(rank)配体的受体激活剂(rankL),以及巨噬细胞刺激性刺激因子(M-CSF)的允许水平。RANKL主要由成骨细胞谱系细胞(MSC,成骨细胞和成骨细胞)和淋巴细胞产生。成熟的骨 - 分辨破骨细胞是大型多核细胞。使用密封区在骨表面附着并用褶皱的边框增强其表面,成熟的破骨细胞分泌盐酸(HCL)创建一种酸性微环境,其中诸如calterepsin k之类的酶(例如canterpsin k),降低了I型I型collagen collagen,是最活跃的(21,73,73,85)。
在某些必需震颤(ET)的患者中,据报道,丘脑腹中间核的深脑刺激的有效性部分丧失,这可能是由于永久性刺激的习惯。这项研究的重点是随着时间的流逝,VIM局部势势(LFP)数据的演变,以评估基于丘脑活性的闭环治疗的长期可行性。我们使用Activa™PC + S(Medtronic Plc。允许同一区域的记录和刺激。特别注意描述LFP的演变,随着刺激的关闭后,手术后的3个月到24个月。We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV 2 /Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV n = 7/10患者的姿势/动作期间为2/Hz; p = 0.014)和手术后24个月(静止时为2.32±0.35 vs 0.75±0.78 µV 2/Hz 4/6患者的姿势/动作; p = 0.017)。在关闭刺激时表现出显着降低高βLFP振幅的患者中,在随访期间至少观察到了这一现象两次。尽管在诱导震颤过程中高βLFPS振幅的这种降低的程度可能会随着时间而变化,但这种运动的丘脑生物标志物可能长期用于闭环治疗。
Address: São Luís, Maranhão, Brazil E-mail: manoelaarouche10@gmail.com Abstract Vago nerve stimulation (VNS) is a neuromodulatory technique that uses electrical impulses to stimulate the tenth cranial nerve, regulating involuntary functions and being applied to the treatment of various neurological and psychiatric conditions. 本研究回顾了最新的VNS进展,重点是其在耐药性癫痫,VC康复后,情绪障碍和认知功能障碍中的应用。 该方法涉及对2016年至2024年之间发表的研究的定性系统回顾,该研究使用了PubMed,Medline,Cochrane Library和Burry数据库中的特定描述符。 分析包括7项研究,以解决侵入性刺激和无创刺激。 结果表明,VNS在降低癫痫发作方面具有证明有效性,尤其是在耐药性癫痫病例中对神经可塑性的影响,从而促进了VC后运动后的运动恢复。 此外,VNS已证明可以改善对治疗和焦虑症的耐药性症状,尤其是诸如经皮刺激之类的非侵入性形式。 研究还表明,VNs抑制神经造成的可能性并改善了血管认知障碍患者的认知功能。 尽管有进步,但自定义刺激参数和对周围效应的完全了解仍然需要进一步研究。 vns被证明是多种疾病的有希望的干预措施,具有临床实践的潜力。Address: São Luís, Maranhão, Brazil E-mail: manoelaarouche10@gmail.com Abstract Vago nerve stimulation (VNS) is a neuromodulatory technique that uses electrical impulses to stimulate the tenth cranial nerve, regulating involuntary functions and being applied to the treatment of various neurological and psychiatric conditions.本研究回顾了最新的VNS进展,重点是其在耐药性癫痫,VC康复后,情绪障碍和认知功能障碍中的应用。该方法涉及对2016年至2024年之间发表的研究的定性系统回顾,该研究使用了PubMed,Medline,Cochrane Library和Burry数据库中的特定描述符。分析包括7项研究,以解决侵入性刺激和无创刺激。结果表明,VNS在降低癫痫发作方面具有证明有效性,尤其是在耐药性癫痫病例中对神经可塑性的影响,从而促进了VC后运动后的运动恢复。此外,VNS已证明可以改善对治疗和焦虑症的耐药性症状,尤其是诸如经皮刺激之类的非侵入性形式。研究还表明,VNs抑制神经造成的可能性并改善了血管认知障碍患者的认知功能。尽管有进步,但自定义刺激参数和对周围效应的完全了解仍然需要进一步研究。vns被证明是多种疾病的有希望的干预措施,具有临床实践的潜力。从这个意义上讲,该研究增强了VNS作为多模式治疗工具的相关性,重点是其对神经和精神病疾病的影响。关键字:迷走神经刺激,抗性癫痫,VC后康复,情绪障碍,神经可塑性。抽象的迷走神经刺激(VNS)是一种神经调节技术,它使用电脉冲来刺激第十个颅神经,调节非自愿功能并应用于严重神经和精神病的治疗中。这项研究回顾了VN的最新进展,重点介绍了其在抵抗癫痫,中风后康复,情绪障碍和认知功能障碍中的应用。该方法涉及对2016年至2024年之间发表的研究的系统定性综述,使用PubMed中的特定描述符,
摘要:特质焦虑涉及体验和报告负面情绪和思想的稳定倾向,例如在不同情况下恐惧和担忧,以及对环境的稳定看法,其特征是威胁性刺激。先前的研究试图研究与焦虑相关的神经解剖学特征,主要是使用单变量分析,从而导致对比结果。这项研究的目的是通过利用联合数据融合机学习方法来构建脑形态特征中特质焦虑中个体差异的预测模型,以允许对新病例的概括。此外,我们旨在进行网络分析,以测试与焦虑相关网络在调节其他与焦虑无关的其他网络中具有核心作用的假设。最后,我们想检验以下假设:特质焦虑与特定的认知情绪调节策略有关,以及焦虑是否随着衰老而减少。使用数据融合无监督的机器学习方法(Parallel ICA)的158名参与者的结构性大脑图像第一次分解为独立的灰色和白质网络。然后,使用监督的机器学习(决策树)和向后回归来提取和测试特质焦虑的预测模型的普遍性。两个协调的灰色和白质独立网络成功地预测了特质焦虑。我们还发现,性状焦虑与灾难性,反思,其他和自称的焦虑呈正相关,并且与重新聚焦和重新评估的积极重新关联和负相关。第一个网络主要包括顶叶和时间区域,例如中心后,前后和中部和上颞回,而第二个网络包括额叶和顶叶区域,例如上颞回和中间回,前缘和前扣带和前胎。此外,特质焦虑与年龄负相关。本文提供了有关预测大脑和心理特征性状焦虑焦虑中个体差异的新见解,并可以为将来的诊断预测焦虑症铺平道路。
抑郁症和其他精神病/神经系统疾病的描述/背景经颅磁刺激经颅磁刺激(TMS)(TMS)在1985年引入,作为一种无创刺激大脑的新方法,涉及将小线圈放置在整个头皮上,从而通过磁场通过磁场进行了快速交流,从而通过磁性刺激了磁场,从而通过磁场进行了交流,从而通过磁场进行了量表皮质。TMS最初用于研究神经传导;例如,运动皮层上的TMS将产生对侧肌肉诱发的潜力。电动机阈值是诱导运动反应所需的最小刺激强度,可以通过将部位定位在头皮上以最佳刺激手动刺激,然后逐渐增加刺激强度,从而为每个人确定。对使用TMS作为抑郁症治疗的兴趣通过开发可以提供快速,重复性刺激的设备增强。成像研究表明,抑郁症患者的左侧背侧前额叶皮层的活性降低,早期研究表明,左侧背侧前额叶皮层的高频(例如5至10 Hz)TMS具有抗抑郁药的作用。与电抽搐治疗(ECT)相比,TMS不需要全身麻醉,并且通常不会引起抽搐。重复的TMS(TMS)也被测试是针对各种其他精神病和神经系统疾病的一种治疗方法。高频TM(通常≥10Hz)诱导神经活动的增加,而低频TMS(通常≤1Hz)具有相反的效果。常规TMS提供反复的电磁脉冲,以诱导长时间的神经活动调节,通常在背外侧前额叶皮层上应用。如果在同一会话中执行了两个程序,则该干预措施被描述为双侧TMS。
时变介质的光学[1-3]具有悠久的历史,其开创性研究可以追溯到1950年代至1970年代[4,5]。材料工程和纳米制造的最新进展已恢复了对这一领域的兴趣,从而在实验者的范围内实现了时间调节的光子结构[6,7]。随着时间的推移调节材料参数可解锁一组有趣的功能[8]。由于模量破坏了时间翻译对称性,因此能量在总体上不能保守[4]。它可以对辐射[9,10],频率转换甚至固定电荷的辐射[11]实现强大而选择性的扩增[11]。热量,即使在没有静态磁场的情况下,介质的时间调节也可以在光学频率下打破时间转换对称性t,从而铺平了朝着强烈非偏置光学结构铺平的方法[12,13]。这些可能性刺激了很多工作,如最近的评论[1-3]。时变介质的物理学与光子晶体的相关区域表现出与工程空间周期性的人工结构相关区域。类似于光子晶体的新兴特性源自其空间结构,时间调节培养基的物理学植根于材料种子的特定形式(图。1)。因此,定期调制的疗法通常称为光子时间晶体(PTC)。请注意,由于外部刺激,这些结构会在时间上破裂翻译对称性,这将它们与时间晶体的适当[14,15]区分开来,其中t破坏了t-破坏性。尽管PTC经常打破T对称性和互惠性,但可用的非偏置响应的多样性仍然在很大程度上没有探索。轴轴电动力学[16],这一直是基本兴趣的重点
大多数疫苗都需要多剂诱导高频率疫苗的持久保护性免疫,并确保个人和牛群免疫力强。重复的免疫原性刺激不仅会增加适应性免疫的强度和耐用性,而且还会影响其质量。已知几种疫苗参数会影响自适应免疫反应,包括尤其是免疫数,它们之间的延迟以及不同重组疫苗载体的递送顺序。此外,初始效应器先天免疫反应是激活和调节B和T细胞反应的关键。优化同源和异源素/增强疫苗接种策略需要透彻了解疫苗接种历史如何影响记忆B和T细胞特征。这需要更深入了解先天细胞如何应对多种疫苗接触。在这里,我们回顾了先天细胞,尤其是髓样谱系的细胞如何以外在和内在的方式对第一和第二疫苗剂量有所不同。一方面,主要的特定抗体和记忆T细胞的存在,其临界特性随着启动后的时间而变化,在重新接种时为先天细胞提供了一个不同的环境。另一方面,先天细胞本身可以在初始刺激后很长一段时间内发挥增强的内在抗菌功能,这被称为训练有素的免疫力。我们讨论了训练有素的先天细胞成为主要/增强疫苗策略中的游戏改变者的潜力。它们在抗原摄取,抗原表现,迁移以及作为细胞因子生产者中的功能增加确实可以改善主要记忆B和T细胞的再刺激及其分化为响应增强的有效次级记忆细胞。对训练有素的免疫机制的更好理解对于利用训练有素的先天细胞的全部潜力,优化免疫策略将非常有价值。
目前,有多种治疗勃起功能障碍 (ED) 的方法。这些方法包括药物治疗,例如 5 型磷酸二酯酶抑制剂 (PDE5-Is),侵入性方法,例如海绵体内注射血管活性物质、真空勃起装置和阴茎假体植入。然而,对现有治疗无反应和放弃治疗的患者比例仍然很高。目前的证据表明,ED 的发病机制与多种因素有关,包括潜在合并症、既往手术和心理因素。使用新分子途径或新技术的多种方法已被测试作为难治性 ED 人群的潜在治疗选择。黑皮质素受体激动剂是一种中枢作用药物,它通过在对 PDE5-Is 无反应的患者中无需性刺激即可引发勃起,显示出良好的效果。最近使用人体组织进行的临床和临床前研究表明,包括 Max-K 通道激活剂、鸟苷酸环化酶激活剂和一氧化氮供体在内的新型外周作用药物可以作为单一疗法或与 PDE5-Is 联合用于治疗 ED 患者。多项临床试验表明,使用干细胞的再生疗法对糖尿病性或前列腺切除术后 ED 患者显示出良好的效果。低强度冲击波疗法对血管源性 ED 患者也显示出良好的效果。越来越多的证据表明这些新兴疗法的疗效,尽管大多数疗法仍需通过精心设计的临床试验进行验证。如果这些新兴疗法的长期安全性和疗效得到证明,那么它们有望满足迄今为止对现有 ED 疗法无反应或不满意的患者的需求。
严重的后天性脑损伤 (ABI) 后,一些患者会出现以意识丧失或降低为特征的临床状况,分别称为植物人状态 (VS)/无反应性觉醒综合征 (UWS;Laureys 等人,2010) 和微意识状态 (MCS)(Bernat,2006;Laureys 等人,2010)。这些情况与昏迷一起被称为意识障碍 (DoC),当 DoC 持续超过 28 天时定义为“长期” (Giacino 等人,2018;Kondziella 等人,2020)。昏迷状态是一种急性状态(4 周或更短),患者既缺乏意识又缺乏觉醒(Bernat,2006)。昏迷的典型特征是闭上眼睛,对任何刺激都没有反应(Bernat,2006)。 VS,最近被命名为 UWS(Laureys 等人,2010 年),是昏迷后的一种状态,患者恢复了警觉或警觉性(睁眼),但无法恢复对自我和周围环境的意识。事实上,尽管患者睁开眼睛并恢复了一些睡眠-觉醒周期,但患者无法与环境互动(Formisano 等人,2021 年)。具体而言,VS/UWS 患者通常表现出以下反射行为:听觉惊吓反应(即在受到大声刺激后出现眨眼、眼睑颤动或任何其他身体惊吓反应)、视觉惊吓反应(即在受到靠近受试者眼睛的视觉威胁时出现眨眼或眼睑颤动)、对伤害性刺激作出异常姿势或退缩反应、口腔反射运动(例如咀嚼运动)、对声音的定位(即头部和/或眼睛朝向刺激的位置)(Giacino 等人,2004 年)。MCS 可能在昏迷或 VS/UWS 之后出现,是一种短暂或永久性的状态(Beaumont 和 Kenealy,2005 年)。这是一种严重的意识改变状态,其中最小的
抽象过度活跃的膀胱综合征(OAB)是一种普遍的疾病,其特征是尿液紧急,频率和尿失禁,严重影响了患者的生活质量。s骨神经调节(SNM)已成为一种有效的治疗方法,特别是对于对常规疗法无反应的个体。SNM通过调节s骨神经活性来恢复正常的膀胱功能,从而提供症状缓解和增强的生活质量。最近的临床研究证明了其长期疗效,紧迫性和频率的持续改善以及患者的满意度高。SNM的机制涉及周围和中枢神经途径的调节,使过度活跃的逆转录病活性正常,并重新平衡兴奋性和抑制性神经信号。设备技术的进步,包括可充电系统和适应性刺激,进一步优化了其临床实用性。微创技术和改进的电极设计增强了SNM的安全性和可访问性,减少了并发症和恢复时间。SNM的新兴应用延伸到OAB之外,显示出管理神经源性膀胱,粪便尿失禁和慢性骨盆疼痛的潜力。与数字健康技术集成可以进行远程监控和个性化的调整,改善患者的结果和依从性。未来的方向包括探索合并疗法,扩展的指示以及为量身定制的神经调节的利用机器学习。这种进化强调了SNM在泌尿外科和多学科护理中的变革潜力。随着创新继续完善SNM,其在治疗复杂的骨盆疾病中的作用将扩展,为难治性疾病的患者提供耐用,有效的解决方案。关键字:s骨神经调节,过度活跃的膀胱综合征,神经调节疗法,尿失禁,骨盆疾病