放射性药物新型靶向部分的开发取得了重大进展,特别是在靶向癌细胞和支持组织的方面。这些新型部分包括小肽、环肽、双特异性抗体和纳米抗体,每种部分在特异性、稳定性和药代动力学方面都具有独特的优势。通过揭示新型靶向方法的最新认识和发展,本次研讨会将:• 探索 DEP 树枝状聚合物作为新型靶向部分和有效载荷的平台,以提高放射性同位素的特异性、功效和安全性• DEP 树枝状聚合物正用于开发新型靶向放射性药物,以克服输送难题,实现放射性同位素的最佳生物分布、安全性和功效。探索树枝状聚合物输送靶向放射疗法的能力的体内演示,以获得良好的成像和治疗结果。 • 通过比较和对比方法来评估新方法 Michel Afargan,Starget Pharma 药物开发主管 Jeremy Paull,Starpharma 开发与监管事务副总裁 Daniel Steiner,Molecular Partners 研究与技术高级副总裁
从战略角度来看,一些早期和临床阶段的公司正在创新治疗方式,以改善靶向性、实现更好的安全结果并针对难以治疗的疾病。通过纳米药物或 ADC 在细胞和组织靶向性方面的进步以及使用具有更有利特性的新型放射性同位素(即 α 发射体)是全球战略参与者应考虑扩大规模的关键创新。将放射性药物与新型组合结合起来提供了额外的共同定位机会,特别是在可能对这些组合反应更好的目标亚群中。从本质上讲,放射性药物可以帮助制药公司在日益分化的肿瘤治疗领域进一步批准患者获得药物。
关于药物灭菌的文献有限。本研究旨在评估二氧化氮 (NO 2 ) 灭菌这一新兴技术对五种不同眼科活性药物成分(即盐酸四环素、阿昔洛韦、地塞米松、甲基泼尼松龙和曲安西龙)的效果。测试的 NO 2 过程浓度为 5、10 和 20 mg/L。应用温度为 21 ◦ C,相对湿度为 30 %。过程周期由两个脉冲组成,每个脉冲停留时间为 10 分钟。未处理样品作为空白。通过高效液相色谱联用紫外/可见光检测器评估灭菌方法的效果,用于定量分析降解产物和评估的眼科药物的相对含量。对于盐酸四环素和阿昔洛韦,随着 NO 2 浓度的增加,杂质含量有所增加。考虑到杂质必须符合欧洲药典 (Ph. Eur.) 规定的限度要求,估计最大允许 NO 2 浓度分别为 10 mg/L 和 2.5 mg/L。对于这两种化合物,经 20 mg/L NO 2 处理的样品与未处理样品相比,含量有显著差异。对于甲基强的松龙、地塞米松和曲安西龙,杂质符合 Ph. Eur. 对每种 NO 2 浓度的限度要求,相对含量没有显著影响。由于会导致严重降解,不建议用 NO 2 对盐酸四环素和阿昔洛韦进行灭菌。甲基强的松龙、地塞米松和曲安西龙的 NO 2 灭菌可应用于相关药品的无菌处理程序中。
加泰罗尼亚高级化学研究所(IQAC)是西班牙国家研究委员会(CSIC)的研究中心之一。该研究所位于巴塞罗那,其成立于2007年,其使命是进行化学科学卓越研究,其广泛的目标是改善生活质量。实现此任务的一般策略涉及化学方法来解决和解决社会挑战,主要是与人类健康有关的挑战,化学过程和产品的可持续性以及针对不同应用的新型材料的需求。自成立以来,IQAC一直处于永久态度,将其知识和技术结果转移到工业部门。
尽管OMICS技术的进步,包括蛋白质组学和转录组学,但对治疗靶标的识别仍然具有挑战性。辅助组学最近成为一种功能蛋白质组学的独特技术,用于全球结合蛋白配体的全球分析。应用于患病与健康的血管,比较辅助组学系统地映射新型疾病限制的配体,可选择性靶向病理学但无生理途径,从而具有内在安全性高效。在这篇综述中,我们讨论了细胞配体作为治疗靶标的潜力,并总结了韧带的发展。我们进一步比较了药物目标发现的不同OMIC技术的优势和局限性,并讨论了提高药物研发成功率的目标选择标准。
马萨诸塞州贝德福德,2024 年 11 月 11 日 (GLOBE NEWSWIRE) -- Lantheus Holdings, Inc.(“Lantheus”或“公司”)(纳斯达克股票代码:LNTH)是一家领先的专注于放射性药物的公司,致力于帮助临床医生发现、对抗和跟踪疾病,以提供更好的患者治疗效果,该公司指出,医疗保险和医疗补助服务中心 (CMS) 最近在附录 B 中发布了更新的支付率,该附录与 2025 日历年医疗保险医院门诊预付费系统 (OPPS) 的最终规则有关。公司继续赞扬 CMS 认识到专业诊断放射性药物的价值并确保患者广泛获得该药物。 PYLARIFY ® (piflufolastat F 18) 有望在 2024 年实现超过 10 亿美元的销售额,Lantheus 重申其对 2025 年 PYLARIFY 的展望,认为其将是一个重磅品牌,并将继续成为美国 PSMA PET 成像剂的明确标准和第一大订购量
基因毒性试验可定义为体外和体内试验,旨在识别通过各种机制诱导基因损伤(致突变性或致染色体断裂性)的化合物。这些试验能够识别与 DNA 损伤及其固定相关的危害。DNA 损伤的固定是基因突变(即影响单个基因的 DNA 序列变化)和更大规模的改变(如染色体丢失或易位,所有这些都被认为是不可逆的影响)在细胞中建立的过程。这些变化可能是遗传的并可能导致癌症。然而,基因改变只是导致癌症的一个因素。癌症被视为一个复杂的多步骤过程的结果,涉及基因改变,可能与非遗传决定因素相结合。
摘要:背景:高亲和力放射性杂交 PSMA 靶向放射性药物 18 F-flotufolastat ( 18 F-rhPSMA-7.3) 新近获批用于前列腺癌的诊断成像。在此,我们对两项 3 期研究进行了事后分析,以量化一系列正常器官对 18 F-flotufolastat 的摄取。方法:重新评估了 LIGHTHOUSE 和 SPOTLIGHT 中的所有 718 次可评估的 18 F-flotufolastat 扫描。此外,还审查了患者的医疗记录,并排除了肿瘤负荷高 (PSA>20 ng/mL)、生物分布改变 (例如慢性肾病)、正常器官发生重大解剖变化 (例如肾切除术) 或有任何其他癌症病史的患者。医学物理学家在特定器官上定义感兴趣体积,以根据 PERCIST 1.0 标准评估 SUV 平均值和 SUV 峰值。正态分布的数据以平均值 (SD) 报告,非正态分布的数据以中位数 (IQR) 报告。变异系数 (CoV;对于正态分布数据计算为 SD/平均值,对于非正态分布数据计算为 IQR/中位数) 用于量化 SUV 指标的变异性。结果:总共有 546 名患者(244 名原发性患者,302 名复发性患者)的扫描结果符合分析条件。除膀胱和脾脏外,所有器官均被视为正态分布。在肝脏中,平均 SUV 平均值为 6.7(SD 1.7),CoV 26%,而膀胱中位 SUV 平均值为 10.6(IQR 11.9),CoV 112%。肝脏中的平均 SUV 峰值为 8.2(SD 2.1),CoV 26%,膀胱中位 SUV 峰值为 16.0(IQR 18.5),CoV 116%。结论:正常器官对 18 F-氟托福司他的生理吸收与其他肾脏清除的放射性药物大致一致,这可能在考虑放射性配体治疗的患者选择时具有重要的临床意义。此外,18 F-氟托福司他的膀胱中位 SUV 峰值低于之前报道的
Md. Fakruddin 1*、Musarrat Jahan Prima 2、Tanwy Chowdhury 1、Umme Tamanna Ferdous 3、Jinia Afroz 4、Md. Asaduzzaman Shishir 5 摘要背景:活性药物成分 (API) 是为药物提供治疗功效的基本成分,但传统的发现方法在创新性和多样性方面有限,阻碍了新型疗法的开发。这导致人们对微生物物种作为生物活性化合物来源的兴趣重新燃起,特别是当制药行业面临 API 采购停滞和传统提取方法带来的环境问题时。方法:本综述讨论了微生物(包括细菌、真菌、藻类和古菌)作为 API 来源的潜力。探索涉及分析微生物多样性、生物合成途径以及基因工程、合成生物学和宏基因组学等生物技术的进步。该综述还重点介绍了传统的基于培养的技术和当代高通量筛选方法,这些方法用于微生物 API 的发现。结果:研究结果表明,微生物具有复杂的代谢过程,能够产生多种生物活性化合物。遗传分析和
放射性药物治疗 (RPT) 是一种新兴的前列腺癌治疗方法,可将辐射传递到肿瘤微环境 (TME) 内的特定分子,从而导致 DNA 损伤和细胞死亡。鉴于 TME 的异质性,探索 RPT 剂量测定和细胞水平的生物学影响至关重要。我们将空间转录组学 (ST) 与计算建模相结合,以研究 RPT 靶向前列腺特异性膜抗原 (PSMA)、成纤维细胞活化蛋白 (FAP) 和胃泌素释放肽受体 (GRPR) 的影响,这些受体均用 β 发射镥-177 ( 177 Lu) 和 α 发射锕-225 ( 225 Ac) 标记。方法:从两名前列腺癌患者的原发组织样本中获取了三个 ST 数据集。从这些数据集中,我们提取了基因表达,包括 FOLH1、GRPR、FAP 和 Harris Hypoxia,并估计了相应 ST 点中不同细胞类型(上皮、内皮和前列腺癌 (PC) 细胞)的比例。我们使用对流-反应-扩散 (CRD) 模型求解偏微分方程 (PDE),计算了每个 ST 点处每个靶向 PSMA、FAP 和 GRPR 的 RPT 的时空分布,假设所有配体的药代动力学参数相似。使用完善的生理学药代动力学 (PBPK) 模型模拟前列腺中的输入功能,该模型经过精心校准,可在 20 天内向前列腺肿瘤输送 10 Gy。使用医学内照射剂量 (MIRD) 形式估计剂量,应用剂量点核 (DVK) 方法。使用线性二次模型估算生存概率,该模型适用于用 177 Lu 和 225 Ac 标记的 β 发射 RPT。使用改进的线性二次模型来估计 α 发射 RPT 的生物效应。结果:结果显示 ST 样本之间的剂量反应和功效模式不同,与 PSMA 和 GRPR 靶向疗法相比,FAP 靶向 RPT 在肿瘤细胞富集区域中表现出有限的有效性。与其他疗法相比,GRPR 靶向 RPT 在缺氧区域表现出更高的耐药性。此外,225 Ac 标记的 RPT 总体上比 177 Lu 标记的 RPT 更有效,尤其是在癌细胞比例低或缺氧高的区域。研究结果表明,225 Ac 标记的 FAP 和 PSMA 靶向 RPT 的组合提供了最佳治疗策略。结论:所提出的方法结合 ST 和计算模型来确定 TME 中 RPT 的剂量和细胞存活概率,有望确定最佳的个性化 RPT 策略。