小的麦哲伦云(SMC)是跨越较大年龄范围的富含球形簇(GC)系统的主机。SMC簇的化学组成仍然很少了解化学进化研究。在这里,我们提供了三个不同的群集中进化巨人的第一个详细的化学研究,NGC 121(10.5 Gyr),NGC 339(6 Gyr)和NGC 419(1.4 Gyr)。结果基于在非常大的望远镜处用火焰获得的高分辨率光谱。这些簇的化学物质与SMC场恒星的化学含量非常相似,支持SMC相对于银河系的特定化学富集史。在所有三个簇中观察到的近似太阳尺度的[α / fe],独立于其[fe / h],是SMC的低恒星形成效率。与银河系相比,主要由大型恒星产生的元素严重代表性不足。尤其是年轻的NGC 419群集的极低[Zn / fe]表明,在过去的2个GYR中,Hypernovae的贡献相对较少。无论年龄如何,这三个GC具有较高的[EU / FE]值。这表明SMC中的R-过程元素的产生非常有效,直至1.5 Gyr,其富集时间尺度与IA型超新星相当。将最古老的SMC对象NGC 121的属性与与Gaia-celladus合并事件相关的原位银河系簇和积聚的簇进行比较时,SMC已经达到了与Gaia-Ecceladus相同的金属性,但具有较低的[Fe / H]比率下[Fe / H]的比率。这表明早期SMC和Gaia-enceladus的化学富集历史存在,并且SMC的早期质量可能比Gaia-Ecceladus低。
小的麦哲伦云(SMC)是跨越较大年龄范围的富含球形簇(GC)系统的主机。SMC簇的化学组成仍然很少了解化学进化研究。在这里,我们提供了三个不同的群集中进化巨人的第一个详细的化学研究,NGC 121(10.5 Gyr),NGC 339(6 Gyr)和NGC 419(1.4 Gyr)。结果基于在非常大的望远镜处用火焰获得的高分辨率光谱。这些簇的化学物质与SMC场恒星的化学含量非常相似,支持SMC相对于银河系的特定化学富集史。在所有三个簇中观察到的近似太阳尺度的[α / fe],与它们的[Fe / H]无关,是SMC的低星形成效率。与银河系相比,主要由大型恒星产生的元素严重代表性不足。尤其是年轻的NGC 419群集的极低[Zn / fe]表明,在过去的2个GYR中,Hypernovae的贡献相对较少。无论年龄如何,这三个GC具有较高的[EU / FE]值。这表明SMC中的R-过程元素的产生非常有效,直至1.5 Gyr,其富集时间尺度与IA型超新星相当。将最古老的SMC对象NGC 121的属性与与Gaia-celladus合并事件相关的原位银河系簇和积聚的簇进行比较时,SMC已经达到了与Gaia-Ecceladus相同的金属性,但具有较低的[Fe / H]比率下[Fe / H]的比率。这表明早期SMC和Gaia-enceladus的化学富集历史存在,并且SMC的早期质量可能比Gaia-Ecceladus低。
上下文。恒星元素丰度通常用于通过假设行星对主要耐火元件的相对丰度(Fe,Mg和Si)的相对丰度与宿主恒星相似,从而限制了岩石系外行星的内部。最近,在低质量行星及其宿主星的组成中发现了非对一的相关性。因此,进一步探索较大岩石系外行星样本的相关性是引起极大的兴趣。目标。我们专注于大量的岩石系外行星,并计算其大量元素丰度比。我们通过比较这些难治性元件的丰度比分析了岩石系外行星及其宿主星之间的定量相关性。方法。岩石系外行星的内部被认为是带有硅酸盐地幔的富铁芯。,我们使用贝叶斯统计方法从其测得的质量和半径上限制了岩石系外行星的大量组成。然后,我们使用正交距离回归(ODR)来表征岩石系外行星及其宿主星之间的组成相关性。结果。一些岩石外球星人被证明具有高铁质量的馏分,因此可能具有富含铁的超核。我们发现岩石系外行星的铁含量取决于其宿主星的金属性[Fe/H]。围绕较高金属恒星形成的行星通常跨越更大的铁质量,从而允许更高的铁含量。结果表明,大多数岩石行星相对于初始的原球盘更富含铁。此外,我们直接将岩石系外行星的铁质量分数与从其宿主恒星的难治性元素丰度比推导的铁质级分。
自 20 世纪 50 年代末以来,人类进入太空(本文定义为低地球轨道 (LEO) 及更远的太空),除极少数例外,仅限于训练有素的宇航员。展望未来,人们越来越期望技术能够使公众能够参观太空和在太空度假。随着现在所谓的数字现实 (DR) 或沉浸式临场感的功能不断增强,太空度假有两种方式:虚拟和物理。本文将讨论这两种方式(参考文献 1)。潜在的太空旅游体验包括空间站、卫星、行星和小行星等目的地。此外,实际上只有使用目前已知或预计的技术,才能围绕其他恒星的行星/卫星。本文讨论了技术需要解决/正在解决的太空旅游问题,以实现太空旅游、由此产生的太空旅游体验和开发商业深空。太空是黑暗、寒冷的,几乎是完美的真空,具有微重力、GEV、银河系空间辐射和难以想象的距离,固体物质是微量物质,但却提供了使人类生存所需的能量。太空通常被称为最后的边疆,而如上所述,一般的环境条件与人类在地球上进化时的环境条件大不相同。因此,需要大量技术才能使人类进入太空。事实上,即使是物理学似乎也在宇宙尺度上发生变化,包括暗物质/能量、量子理论和宇宙常数之间的巨大分歧,以及反物质发生了什么之谜等。人们对其他星球上的生命的兴趣和寻找也日益增加,这些星球可能是以硅或硫为基础的,而不是碳。总的来说,有很多东西需要学习。月球/火星/附近小行星以外的太阳系目的地需要大大增加旅行时间(数年到数十年)、成本、距离以及健康和安全技术。太空旅游问题和选择实现太空旅游必须解决的基本问题是安全性/可靠性和成本/价格。其中,第一个是最困难和最困难的
在过去几十年中,对磁化等离子体的分离区域中具有高浓度的磁能的电流板形成,并且通过磁重新连接快速释放的能量的可能性。根据现代概念,当前板的动力学为各种恒星的变化型现象提供了基础,包括其他恒星上的太阳耀斑和耀斑,地球和其他行星磁层中的实体,以及在toka mak等离子体中的破坏不稳定性[1-5]。与理论研究一起,在专用的实验室实验中研究了电流板和磁重新连接的动力学。这些实验除其他因素外,还可以提供非平稳的天体物理现象的实验室建模[6-12]。实验室实验是在高度控制和可恢复的条件下进行的,并使用现代血浆诊断方法,这允许等离子体动力学与电流板中磁场,电流和电子动力学的演变相关联[11-16]。可以在相对较宽的范围内建立实验实验中电流板的初始条件,因此提供了不同结构的当前表,就像在自然条件下的当前板一样(例如,在地球的磁层中)。特别是,通过更改血浆中离子的质量,我们可以在板的相对厚度和霍尔效应在等离子体动力学中的作用发生变化[14,15]。在具有重离子的血浆中,我们获得了具有离子惯性长度的厚度的“薄”次离子电流板。在较轻的离子等离子体中,“厚”电流板通常形成,其厚度超过了离子惯性长度的几倍[14,15,17]。积累在亚稳态电流板附近的磁能可以转化为热能,并转化为血浆高速流的能量[18-20]。等离子体沿着电流板的表面加速,主要是在最初从纸板的中部区域到其两侧的边缘的Ampère力的作用下[11,21]。在某些情况下,血浆加速度可以在空间上进行 -
项目描述:形成行星的光盘,气体和尘埃旋转的年轻恒星的光盘是行星的出生地。由于其能够解决这些物体中的小细节的能力,Atacama大毫米/亚毫米/亚毫米(Alma)彻底改变了我们对行星形成的理解,表明大多数构成星球的碟片都显示出“间隙和戒指”的序列,因此被认为是由于年轻星球和他们形成的圆盘的持续相互作用(图。1a)。但是,直接证据证明存在嵌入行星的存在仅在一个圆盘中可用,PDS 70(图1b和1c),在其中检测到了两个类似木星的年轻行星。普遍认为,PDS 70的独特性位于其大腔中(参见图1a和1c),几乎完全没有灰尘和气体,因此非常适合搜索与背景光盘一号区分开的行星发射。该项目的目的是搜索PDS 70个类似物,建立具有宽阔和深腔的行星形成光盘的完整普查,作为确定可能的行星托管圆盘的第一步。这将通过将光学计算到可用于附近恒星形成区域的数百个来源的MM光度法结合来完成。如果时间允许,通过搜索Alma档案,学生将使用这些光盘的亚MM图像(如果有)进行补充,并确定最佳的行星托管候选人。学生将学会搜索多波长的光度计目录,并将它们组合起来以识别盘状恒星和在这些来源中存在腔。如果时间允许,他们还将学习如何从这些观察值中搜索ALMA存档和重建图像(例如图1A,1C)中的数据。主要工具将是开源软件,用于搜索和交叉匹配在线目录(例如TopCat)和图像ALMA数据(CASA)。
天体物理环境中发生的化学反应主要受碳氧 (C/O) 比控制。这是因为一氧化碳 (CO) 键能高达 11.2 eV,使 CO 成为已知的最稳定的双原子分子 ( Luo, 2007 )。这种经典的二分法受到了挑战,因为光化学和脉动激波等非平衡过程会破坏强 CO 键并导致意想不到的分子的形成 ( Agúndez et al., 2010; Gobrecht et al., 2016 )。难熔分子和分子团簇是恒星尘埃的前身,具有特别的天文学意义。碳主导区域中的主要尘埃种类之一是碳化硅 (SiC)。在富碳演化恒星中,通常会观察到约 11.3 微米的宽光谱特征,这归因于 SiC 尘埃颗粒的存在( Friedemann,1968; Hackwell,1972; Treffers and Cohen,1974)。 SiC 星尘是从原始陨石中提取的( Bernatowicz et al.,1987; Amari et al.,1994; Hoppe et al.,1996; Zinner et al.,2007; Liu et al.,2014)。最近的研究表明,在原始陨石星尘中发现的绝大多数太阳前 SiC 颗粒源自低质量渐近巨星支 (AGB) 恒星( Cristallo et al.,2020)。但是在富碳演化恒星的恒星包层中也检测到了 SiC、Si 2 C、SiC 2 等分子气相物质( Thaddeus 等人,1984;Cernicharo 等人,1989;McCarthy 等人,2015;Massalkhi 等人,2018)。气相硅碳分子和固态 SiC 尘埃的证据表明,它们的中间体(即 SiC 分子团簇)也存在于富碳天文环境中,并参与成核和 SiC 尘埃形成过程。因此,SiC 分子团簇是我们感兴趣的对象。这项研究是先前工作的延续(Gobrecht 等人,2017),并讨论了先前研究的中性(SiC)n(n = 1–12)团簇的(单个)电离能。本文的结构如下。在第 2 节中,我们介绍了用于推导垂直和绝热电离能的方法。第 3 节展示了这些能量的结果以及绝热优化的阳离子几何形状,第 4 节给出了我们的总结和结论。
上下文。蓝色超级巨人(BSG)是理解大型恒星演变的关键对象,在星系的演化中起着至关重要的作用。然而,理论预测与经验观察之间的差异已经打开了尚未回答的重要问题。研究这些物体具有统计学意义和公正的样本可以帮助改善情况。目标。我们对IACOB光谱数据库的大量银河发光蓝星(其中大多数是BSG)进行了均匀且全面的定量光谱分析,从而提供了重要的参数,以改进和改善理论进化模型。方法。我们使用IACOB-BROAD得出了投影的旋转速度(V SIN I)和大型膨出(V MAC),这与傅立叶变换和线条型拟合技术相结合。我们将高质量的光谱与使用F astwind代码计算的大规模恒星大气的最新模拟进行了比较。这种比较使我们得出有效温度(T e FF),表面重力(log g),微扰动(ξ),硅和氦气的表面丰度,并通过风能强度参数(log Q)评估恒星风的相关性。结果。,我们为迄今为止迄今为止的最大的银河发光O9样品提供了上述量的上述量的估计和相关的不确定性,该样品由光谱分析,包括527个目标。我们发现,在T eff≈21kk处的恒星相对数量明显下降,与低于该温度的快速旋转恒星的稀缺相吻合。我们推测此特征(大致相结合到B2光谱类型)可能大致描绘了在15至85 m⊙之间的质量范围内经验终端时代主序列的位置。通过研究O恒星和BSG的V SIN I分布的主要特征作为T E FF的函数,我们提出,将角动量从恒星芯到表面运输的有效机制可能沿高质量结构域中的主要序列运行。我们发现ξ,v MAC和光谱光度L(定义为T 4 E FF / g)之间的相关性。我们还发现,样品中不超过20%的恒星具有清晰的氦气,并表明该特定子样本的起源可能是二元进化。我们没有发现在风强度区域朝向较低的情况下,风强度增加的明确经验证据。
当核子被奇异数S = -1的超子(如Λ、Σ)取代时,原子核就转变为超核,从而可以研究超子-核子(Y-N)相互作用。众所周知,二体Y-N和三体Y-N-N相互作用,特别是在高重子密度下,对于理解致密恒星的内部结构至关重要[1,2]。杰斐逊实验室[3]对Λ-p弹性散射和J-PARC[4,5]对Σ−-p弹性散射进行了精确测量,最近获得了新结果,这可能有助于限制中子星内部高密度物质的状态方程。直到最近,几乎所有的超核测量都是利用轻粒子(如e、π+、K−)诱导的反应进行的[6–8],其中从超核的光谱性质来分析饱和密度附近Y-N相互作用。利用重离子碰撞中的超核产生来研究Y-N相互作用和QCD物质的性质是过去几十年来人们感兴趣的主题[9–13]。然而,由于统计数据有限,测量主要集中在轻超核的寿命、结合能和产生产额[12,14,15]。热模型[16]和带有聚结后燃烧器的强子输运模型[17,18]计算预测在高能核碰撞中,特别是在高重子密度下,会大量产生轻超核。各向异性流动通常用于研究高能核碰撞中产生的物质的性质。由于其对早期碰撞动力学的真正敏感性 [19–22],动量空间方位分布的傅里叶展开的一阶系数 v 1 ,也称为定向流,已对从 π 介子到轻核的许多粒子进行了分析 [23– 28]。集体流是由此类碰撞中产生的压力梯度驱动的。因此,测量超核集体性使我们能够研究高重子密度下 QCD 状态方程中的 Y - N 相互作用。在本文中,我们报告了在质心能量 √ s NN = 3 GeV Au+Au 碰撞中首次观测到 3 Λ H 和 4 Λ H 的定向流 v 1。数据由 2018 年在 RHIC 上使用固定靶 (FXT) 装置的 STAR 实验收集。能量为 3.85 GeV/u 的金束轰击厚度为 1% 相互作用长度的金靶,该靶位于 STAR 的时间投影室 (TPC) 入口处 [29]。TPC 是 STAR 的主要跟踪探测器,长 4.2 m,直径 4 m,位于沿束流方向的 0.5 T 螺线管磁场内。沿束流方向每个事件的碰撞顶点位置 V z 要求在目标位置的 ± 2 cm 范围内。
上下文。在阳光恒星的宜居区内温暖的岩石外球星是当前和将来的任务的青睐目标。the-Ory表示这些行星在形成时可能会湿润,并且可以居住足够长的时间来发展。但是,目前尚不清楚这些世界上的早期海洋在多大程度上会影响潜在的生物签名的反应。目标。在这项工作中,我们测试了在计划中的生命任务框架内,在温暖,水丰富的大气中生物签名的气候化学响应,维护和可检测性。方法。我们使用耦合的气候化学柱模型1d terra来模拟地球上的行星参数和进化,在与太阳不同的距离下,行星大气的组成。,我们以10%的步骤将传入的启发提高了50%,对应于1.00至0.82 au的轨道。在表面上使用和没有现代地球的生物量通量进行。 使用大蒜辐射转移模型产生所有模拟的理论发射光谱。 然后使用 Lifesim向这些光谱的观察添加噪声并模拟观察结果,以评估如何区分地球样行星的生物和非生物气氛。 结果。 增加的启动导致地表水蒸气压力从0.01 bar(1.31%,s = 1.0)升至0.61 bar(34.72%,s = 1.5)。 在生物情景中,臭氧层生存,因为氧化物与氮氧化物的氧化物反应阻止了净臭氧化学水槽的增加。。使用大蒜辐射转移模型产生所有模拟的理论发射光谱。Lifesim向这些光谱的观察添加噪声并模拟观察结果,以评估如何区分地球样行星的生物和非生物气氛。结果。增加的启动导致地表水蒸气压力从0.01 bar(1.31%,s = 1.0)升至0.61 bar(34.72%,s = 1.5)。在生物情景中,臭氧层生存,因为氧化物与氮氧化物的氧化物反应阻止了净臭氧化学水槽的增加。的甲烷大大降低了,比地球高20%的强化。使用Lifesim进行的合成观测,假设孔径为2.0 m,并且解决功率为R = 50,表明臭氧特征在9.6 µm处的臭氧特征可靠地可靠地指向10 parsecs中的系统的O 2的地球样生物圈表面通量。由于H 2 O轮廓不同而导致的大气温度结构的差异也使观测值在15.0 µm处可以可靠地识别CH 4表面通量等于地球生物圈的行星。将光圈增加到3.5 m,并将仪器吞吐量增加到15%,将此范围增加到22.5 PC。