机器人技术可以模拟人类,并能自动复制某些人类动作和功能(Oxford,2020)。机器人研究是一项跨学科研究,涉及机器人的设计、建造、操作和使用(Rouse,2019),并与电子、计算机科学、人工智能、机电一体化、纳米技术和生物工程重叠(Veruggio,2006)。机器人是在 20 世纪中叶开发的,主要用于物流行业的重物搬运。第一台工业机器人是由美国物理学家工程师 Joseph F. Engelberger 开发的,他是“机器人之父”(机器人工业协会,nd)。他还于1984年发明了HelpMate机器人技术,用于医院的医疗用品运输。第一个电动机械臂是由斯坦福大学的Scheinman于1960年发明的,随后机械臂的重大发展包括1974年“银臂”的发明,该发明是一种集成了感觉反馈的机械臂,可以模拟关节位置(Moran,2007)。
近年来,脑机接口 (BCI) 已被提议作为中风后神经康复的一种手段 [1, 2]。研究表明,BCI 可以人工关闭因病变而中断的运动控制回路。BCI 可以通过脑电图解码尝试运动,并触发外骨骼或电刺激等设备,这些设备可以响应尝试运动提供相关的躯体感觉反馈 [3-6]。通过将与尝试运动和躯体感觉反馈相关的皮质活动配对,推测可以诱导与赫布相关的可塑性 [7]。多项研究概述了使用 BCI 进行中风康复的临床效果,其中普遍趋势是患者可以诱导可塑性并改善运动功能 [8-11]。为了进一步完善 BCI 在运动障碍康复中的应用,下一步可能是解码比简单的孤立运动更复杂、更具临床相关性的功能性运动,尽管它们也很重要。使用更加复杂的现代外骨骼,这些复杂的运动也更容易实现。然而,限制因素可能是从单次脑电图中解码功能性运动,因为记录的电活动是潜在活动的模糊图像,例如由于体积传导 [12]。先前的研究表明,可以解码具有不同动力学特征的不同运动类型 [4, 6, 13, 14],但这主要是简单的孤立运动,例如踝关节背屈或腕关节伸展/屈曲。此外,同一肢体的不同运动类型也已被解码 [15, 16]。研究还表明,可以从脑电图中检测到更复杂的运动,例如 [17],但要用于诱导可塑性的康复,仅应使用运动前活动来实现传出活动和体感反馈之间的严格时间关联 [18]。预计体感反馈应在最大传出活动 [7] 后不到 200-300 毫秒内到达皮质层,此时运动控制信号被发送到脊髓。这限制了可用于解码预期运动的判别信息量。尽管 EEG 的空间分辨率有限,但硬件(放大器和电极)和信号处理技术不断改进,可能可以从单次试验 EEG 中解码复杂的功能性运动。
(11)研究表明,限制对儿童性虐待材料的传播不仅对于避免与虐待的图像和视频相关的受害至关重要,而且作为犯罪者侧的预防形式至关重要,因为访问儿童性虐待材料通常是动手虐待的第一步,无论它是对真实或简单的虐待的描述还是现实的虐待。人工智能应用程序的持续开发能够创建与真实图像无法区分的现实图像,所谓的“深餐”图像和描述儿童性虐待的视频的数量预计在未来几年中会呈指数增长。此外,还利用包括感觉反馈的化身的增强,扩展和虚拟现实设置的开发,例如通过提供触摸感知的设备并未完全涵盖现有定义。明确提及“复制和表征”应确保儿童性虐待材料的定义涵盖这些技术和未来的技术发展,并因此具有足够的技术中性,从而使未来的方式涵盖了这些发展。
感觉运动适应(由于感觉反馈而对运动命令进行的持久改变)使说话者能够将其发音与预期的语音声学效果相匹配。大脑如何整合听觉反馈来修改语音运动命令以及限制这些修改程度的因素仍然未知。在这里,我们研究了言语运动皮层在修改存储的言语运动计划中的作用。在受试者内设计中,参与者在说话和接收第一共振峰的改变的听觉反馈时,分别接受言语运动皮层的假刺激和阳极经颅直流电刺激 (tDCS)。阳极 tDCS 增加了反馈扰动的感觉运动适应率。使用发声器速度方向 (DIVA) 语音生成框架对我们的结果进行计算建模,表明 tDCS 主要通过增加前馈学习率来影响行为。这项研究展示了局部非侵入性神经刺激如何增强听觉反馈与言语运动计划的整合。
摘要在发育中的大鼠中,行为状态对整个感觉运动系统的神经活动产生了深远的调节影响,包括原发性运动皮层(M1)。我们假设在前额叶皮质区域中发生了相似的状态依赖性调制,其中M1形成功能连接。在这里,使用8个和12天大的大鼠在睡眠和唤醒之间自由循环,我们记录了M1,次级运动皮层(M2)和内侧前额叶皮层(MPFC)中的神经活动。在这三个地区的两个年龄中,与唤醒相比,在活跃睡眠期间的神经活动增加(AS)。也,无论行为状态如何,在四肢移动的时期,所有三个区域的神经活动都会增加。像M1一样,M2和MPFC中的运动相关活性是由感觉反馈驱动的。我们的结果与使用麻醉幼崽的先前研究的结果不同,表明AS依赖性调节和感觉响应性扩展到前额叶皮层。这些发现扩大了塑造高阶皮质区域活动发展的可能因素的范围。
使用地形自动编码器预测本体感受皮层解剖结构和神经编码 Kyle P. Blum 1*、Max Grogan 2*、Yufei Wu 2*、J. Alex Harston 2、Lee E. Miller 1 和 A. Aldo Faisal 2 * 对本文贡献相同 1 西北大学 2 伦敦帝国理工学院 本体感受是最不为人理解的感觉之一,但却是控制运动的基础。甚至肢体姿势在体感皮层中如何表现等基本问题也不清楚。我们开发了一种具有地形横向连接的变分自动编码器 (topo-VAE),从大量自然运动数据中计算假定的皮层图。尽管不适合神经数据,但我们的模型重现了猴子中心向外伸展的两组观察结果:1. 尽管模型不了解手臂运动学或手部坐标系,但本体感受场在以手为中心的坐标系中的形状和速度依赖性。 2. 从多电极阵列记录的神经元首选方向 (PD) 分布。该模型做出了几个可测试的预测:1. 跨皮层的编码具有斑点和风车类型的几何 PD。2. 很少有神经元会只编码单个关节。Topo-VAE 为理解感觉运动表征提供了原则基础,以及神经流形的理论基础,并应用于脑机接口中感觉反馈的恢复和人形机器人的控制。关键词:本体感觉、皮层地图、地形测绘、深度学习、自然感觉统计、感觉生态学、变分自动编码器、计算神经科学、运动运动学、神经活动、初级体感皮层、自然行为、神经力学简介体感包括由皮肤受体提供的熟悉的触觉和本体感觉,本体感觉是一种不太有意识的感觉,它可以告诉我们动作姿势、运动以及作用于四肢的相关力量。前者受到了科学界的广泛关注,而本体感觉则经常被忽视,然而这种感觉反馈方式对于我们规划、控制和调整运动的能力至关重要。在工程学中,如果控制器不知道执行器的位置,就不可能控制机器人的运动;相应地,在人体运动控制(本体感觉)中,反馈控制理论是肢体控制计算的卓越解释(Todorov 和 Jordan 2002;Scott 2004)。此外,患有本体感觉神经功能障碍的个体,例如 IW 患者,即使在有视力和完整的运动系统的情况下,也存在严重的运动障碍 (Tuthill 和 Azim 2018;Sainburg、Poizner 和 Ghez 1993)。同样,神经假体领域的最新重大进展是
运动皮层通过向下游神经回路发送时间模式来启动运动。运动执行过程中的模式被认为是由运动皮层网络内的内部动态产生的。然而,本体感受等外部输入也会影响运动皮层动态。为了研究内部动态和本体感受反馈对自愿运动执行的贡献,我们构建了几个运动皮层模型,从虚拟手臂接收不同组合的本体感受反馈来执行延迟到达任务。考虑到延迟、噪声和感觉反馈的来源,我们构建了一个感觉估计网络。我们发现抑制稳定网络接收的手部运动学和肌肉力量产生的模式与运动皮层神经元数据中观察到的模式最相似。此外,我们使用了一种破坏策略来剖析内部动态和本体感受反馈的贡献,发现内部动态占主导地位,而本体感受反馈可以微调运动命令。对消融实验的分析表明,本体感受反馈提高了对嘈杂初始条件的鲁棒性。我们的研究结果表明,内在结构和外部输入对于产生类似大脑的神经活动都至关重要。
虽然文献表明,当感觉反馈与所考虑的病理相关时,神经反馈的表现会有所改善,但仍然很难表现出一种能代表我们情绪状态的适当反馈。在这项研究中,我们发起了神经科学家和艺术家之间的合作,以开发一种情绪的视觉表现。情绪被表示为根据价数和唤醒水平在白色球体中移动的粒子。探索了粒子控制的几种可能性:粒子的方向、它们在特定位置的浓度或它们的重力。参与者被要求在 0 到 5 的范围内评估这些可能性,评估不同表现的艺术性程度以及是否可以用作临床活动,他们是否认为他们在神经反馈练习期间成功控制了粒子,以及他们是否欣赏这种体验。我们发现控制粒子的方向和浓度被认为是最具艺术性的,平均得分约为 5 分中的 3 分,107 名参与者中有 47% 认为粒子的浓度是艺术性的。此外,我们发现参与者可以在此会话中显著控制粒子的方向。我们的方法是评估情绪神经反馈在多个疗程中的有效性之前的第一步。关键词:神经反馈;情绪;艺术
虽然文献表明,当感觉反馈与所考虑的病理相关时,神经反馈的表现会有所改善,但仍然很难表现出一种能代表我们情绪状态的适当反馈。在这项研究中,我们发起了神经科学家和艺术家之间的合作,以开发一种情绪的视觉表现。情绪被表示为根据价数和唤醒水平在白色球体中移动的粒子。探索了粒子控制的几种可能性:粒子的方向、它们在特定位置的浓度或它们的重力。参与者被要求在 0 到 5 的范围内评估这些可能性,评估不同表现的艺术性程度以及是否可以用作临床活动,他们是否认为他们在神经反馈练习期间成功控制了粒子,以及他们是否欣赏这种体验。我们发现控制粒子的方向和浓度被认为是最具艺术性的,平均得分约为 5 分中的 3 分,107 名参与者中有 47% 认为粒子的浓度是艺术性的。此外,我们发现参与者可以在此会话中显著控制粒子的方向。我们的方法是评估情绪神经反馈在多个疗程中的有效性之前的第一步。关键词:神经反馈;情绪;艺术
摘要:仿生学的最新进展通过利用自然界中的复杂设计和机制来刺激了假体肢体发展的重要创新。生物仪,也称为“自然启发的工程”,涉及研究和模拟生物系统以应对复杂的人类挑战。这项全面的综述提供了对生物模拟假体的最新趋势的见解,重点是利用自然生物力学,备用反馈机制和控制系统的知识,以紧密模仿生物附件。突出显示的突破包括尖端材料和制造技术的整合,例如3D打印,促进了假肢的无缝解剖整合。此外,将神经接口和感觉反馈系统的结合增强,增强了控制和运动,而3D扫描等技术则可以实现个性化的自定义,从而优化了个人用户的舒适性和功能。正在进行的生物基因研究工作对进步有希望,为肢体损失或损害的人提供了增强的流动性和整合性。这篇评论阐明了仿生假体技术的动态景观,强调了其在康复和辅助技术方面的变革潜力。它设想了一个未来,假肢解决方案与人体无缝融合,增强了生活质量和生活质量。