未来战略性 X 射线天文学任务(如 AXIS [ 1 ])建议将大收集面积反射镜与大型、快速、宽视场成像仪相结合。高帧速率对于最大限度地减少点源的堆积影响以及减轻粒子背景对微弱弥散气体研究的影响至关重要。同时,还必须保持低噪音和出色的软 X 射线能量响应以满足关键的科学目标。除了所需的帧速率外,最先进的 CCD 几乎能够提供此类任务的所有关键性能指标。大型探测器的快速帧速率可带来非常高的有效像素速率。我们斯坦福大学的团队正在与麻省理工学院 (MIT) 和麻省理工学院林肯实验室 (MIT-LL) 合作,通过多管齐下的方法解决这一技术差距。为了实现更高的帧速率,我们正在努力提高单个输出的读出速度和每个 CCD 可以并行运行的输出数量。图 1 显示了适用于 AXIS 焦平面的可能 CCD 模块概念。单个输出的速度提高源于 CCD 输出级优化、通过使用专用 ASIC 减少寄生输出负载以及对视频波形使用数字信号处理。读出 ASIC 还允许我们以较小的占用空间和适中的功耗并行操作多个输出。我们还在研究 MIT-LL 制造的一种新型探测器技术,即单电子灵敏读出(以下简称 SiSeRO),虽然它还不能达到单电子噪声性能,但为实现极低噪声、高速 X 射线探测器提供了一条有希望的途径。
采伐区的植被状况,以评估植被发展情况并规定实现森林再生目标所需的行动。随着当前对生态系统管理的重视、不断上升的造林处理成本、不断发展的基于计算机的决策支持工具以及对更高责任制的要求,对此类数据的需求日益增加。与数据采集的实地调查方法相关的缺陷(例如高成本、主观性和低空间和时间覆盖率)经常限制决策的有效性。在问题分析中评估了遥感数据补充实地收集的森林植被管理数据的潜力,该问题分析包括全面的文献综述以及在国家研讨会上与遥感和植被管理专家的磋商。在目前可用的传感器中,航空照片似乎提供了最合适的特性组合,包括高空间分辨率、立体覆盖、一系列图像比例、各种胶片、镜头和相机选项、几何校正能力、多功能性和适中成本。提出了一种灵活的策略,采用一系列 1: 10,000、15,000 和 1:500 比例的航空照片:1)准确绘制采伐区地图,2)促进针对特定位置的林业处理、采样、缓冲区、野生动物区等处方,以及 3)监测和记录再生期间特定点的条件和活动。当前的遥感技术不太可能支持需要有关较小植物(<0.5 米高)和/或单个或稀有植物物种的非常详细信息的调查。建议的研究领域包括:1)数字帧相机或其他经济高效的数字成像仪,作为传统相机的替代品,2)基于计算机的数字图像数据分类和解释算法,3)图像测量和物理测量之间的关系,例如叶面积指数和生物量,4)成像标准,5)机载视频、激光高度计和雷达作为补充传感器,6)部分切割系统中的遥感应用。
为什么要将国际空间站用作实验室? 7 从国际空间站植物研究中得到的经验教训 9 深入了解植物的基本生物处理器 9 重力与其他空间环境刺激之间的相互作用 9 多组学方法为植物如何适应太空飞行提供线索 11 植物对太空飞行的细胞反应 12 太空中作物生产的物理和生物制约因素 13 国际空间站的大气条件可能会影响作物生长 13 微重力下对流减少对水供应、养分输送和气体交换带来挑战 15 空间作物生产室的光照要求 16 植物微生物:在未来空间作物生产系统中分辨敌友 18 国际空间站上的研究设施和设备及其选择方法 19 太空探索中使用的植物生长系统的设计注意事项 19 植物生长设施 19 罐内生物研究 (BRIC) 20 BRIC 培养皿固定装置(BRIC/PDFU)和 BRIC-LED 20 肯尼迪固定管(KFT) 20 植物实验单元/细胞生物学实验设施(PEU/CBEF) 21 蔬菜生产系统(Veggie) 22 Spectrum(多光谱荧光成像仪) 23 高级植物栖息地 24 多用途可变 G 平台(MVP) 25 用于国际空间站实验的立方体有效载荷 25 XROOTS(eXposed Root 在轨测试系统)-正在开发中 26 被动轨道营养输送系统(PONDS)-正在开发中) 26 国际空间站上的支持设施 27 为国际空间站提供资金、开发和启动研究 28 寻找赞助商 28 国际空间站美国国家实验室 28 其他政府机构 29 国际空间站商业机会 30 与 NASA 合作 31 参考文献 32
NARDA-MITEQ 客户最终用户计划 诺斯罗普·格鲁曼公司 NASA NPOESS 诺斯罗普·格鲁曼公司 - Corvair NT-Space JAXA 全球降水测量 喷气推进实验室 NASA 火星科学实验室 Comdev JPL Cloudsat NASA NASA 水瓶座应用物理实验室 NASA 新视野号 ASTRIUM GmbH DLR TanDEM X ASTRIUM SAS ISRO Megatropics MacDonald Dettwiler CSA Radarsat ll ALCATEL Space 德国国防部 SAR-Lupe ALCATEL Space JPL Jason-2 洛克希德·马丁公司 USAF Alpha Extension 波尔多大学 ESA Herschel SRON ESA Herschel Technologica CSA Herschel Max Plank 研究所 ESA Herschel Dornier DLR TerraSAR-X 喷气推进实验室 NASA Miro、EOS-MLS Assurance Technology 美国海军 Windsat ITT USAF Alpha l-lV 摩托罗拉/GD USAF P-94-99、02 E-Systems JPL SEAWINDS Matra Marconi EUMESAT MHS E-Systems JPL GEOSAT Aerojet 美国空军 SSMIS、AMSU-B Millitech 美国空军 SSMIS Lockheed 美国空军 STS-54 应用物理实验室 美国海军 Seasat、Spinsat、Topex、扩展试验台 Millitech Ball Aerospace 全球微波成像仪 Harris 美国空军 Alpha Extension 喷气推进实验室 NASA AURA 喷气推进实验室 ESA 罗塞塔号和着陆器 CONAE CONAE 水瓶座/SAC-D 诺斯罗普·格鲁曼 NOAA JPSS 喷气推进实验室 NOAA COSMIC 喷气推进实验室 NASA GRAIL JHU/APL NASA 辐射带风暴探测器 (RBSP)
几个世纪以来,摄影师一直致力于以高速捕捉瞬时场景,这可以追溯到 1878 年迈布里奇拍摄的马匹运动照片和 1887 年马赫拍摄的超音速子弹。然而,直到 20 世纪末,超高速成像(>10 万)才取得突破。特别是,电荷耦合器件 (CCD) 和互补金属氧化物半导体 (CMOS) 等电子成像传感器的引入彻底改变了高速摄影,使采集率高达数百万 fps。尽管这些传感器影响深远,但使用 CCD 或 CMOS 进一步提高帧速率从根本上受到其片上存储和电子读出速度的限制。在这里,我们展示了一种二维 (2D) 动态成像技术,即压缩超快摄影 (CUP),它可以以高达 1000 亿 fps 的速度捕捉非重复的时间演变事件。与现有的超快成像技术相比,CUP 的显著优势在于只需一次相机快照即可测量 x、y、t(x、y 为空间坐标;t 为时间)场景,从而可以观察在几十皮秒的时间尺度上发生的瞬态事件。此外,与传统摄影类似,CUP 是仅接收的,避免了其他单次超快成像仪所需的专门主动照明。因此,CUP 可以对各种发光物体(如荧光或生物发光物体)进行成像。使用 CUP,我们仅用单次激光发射就能可视化四种基本物理现象:激光脉冲反射、折射、两种介质中的光子竞速以及非信息的超光速传播。鉴于 CUP 的能力,我们预计它将在基础科学和应用科学(包括生物医学研究)中得到广泛应用。
目的。利用现有的最佳等离子体诊断技术研究第 24 个太阳周期内平静太阳区域的纳米耀斑,以推导出它们在不同太阳活动水平下的能量分布和对日冕加热的贡献。方法。使用了太阳动力学观测站 (SDO) 上的大气成像组件 (AIA) 的极紫外滤光片。我们分析了 2011 年至 2018 年之间的 30 个 AIA / SDO 图像系列,每个图像系列以 12 秒的节奏覆盖了 400 ″ × 400 ″ 的平静太阳视野,持续超过两小时。使用差异发射测量 (DEM) 分析来推导每个像素的发射测量 (EM) 和温度演变。我们使用基于阈值的算法将纳米耀斑检测为 EM 增强,并从 DEM 观测中推导出它们的热能。结果。纳米耀斑能量分布遵循幂律,其陡度略有变化(α=2.02-2.47),但与太阳活动水平无关。所有数据集的综合纳米耀斑分布涵盖了事件能量的五个数量级(1024-1029尔格),幂律指数α=2.28±0.03。导出的平均能量通量为(3.7±1.6)×104尔格cm-2s-1,比日冕加热要求小一个数量级。我们发现导出的能量通量与太阳活动之间没有相关性。对空间分布的分析揭示了高能量通量(高达3×105尔格cm-2s-1)簇,周围是活动性较低的延伸区域。与来自日震和磁成像仪的磁图的比较表明,高活动性星团优先位于磁网络中和增强磁通密度区域上方。结论。陡峭的幂律斜率(α> 2)表明耀斑能量分布中的总能量由最小事件(即纳米耀斑)主导。我们证明,在宁静太阳中,纳米耀斑分布及其对日冕加热的贡献不会随太阳周期而变化。
活动流建模简介 活动流被定义为神经群体之间的活动运动(Cole 等人,2016 年)。大脑活动流的概念在神经科学文献中无处不在,又无处不在。它无处不在,因为神经传递的标准模型——其中动作电位沿着轴突流动,通过影响树突的神经递质释放影响下游神经元——涉及“活动”(电化学信号)的流动。然而,活动流在神经科学中无处不在,因为神经科学推断通常使用活动模式或连接来进行。七年的研究专注于结合活动模式和连接(通常使用功能/有效连接 (FC))来构建活动流模型——通过活动流程模拟神经认知功能的产生——已经证明了这种方法的广泛实用性,超越了单独的标准活动或连接方法。对任务诱发活动和连接之间的整合进行建模,以对大脑功能做出有力的推断,这可能对开发认知功能神经基础的丰富因果解释至关重要,目的是从根本上理解和开发脑部疾病的治疗方法。为了更好地说明活动流建模方法的相关性,让我们考虑一个假设场景,其中一种外星技术降落在地球上:最佳大脑成像仪 (OBI)。经过一番摆弄,人类科学家发现 OBI 可以以微秒的分辨率在原子水平(包括电磁场)非侵入性地读取整个人类大脑的各个方面。立即收集人类大脑解剖结构和执行各种任务的人类大脑的全脑扫描,并由随附的外星计算机(能够处理 OBI 产生的大量数据集)快速分析数据。这些分析以全分子分辨率绘制人类连接组,以及伴随每个任务的神经活动模式的细胞水平全脑图
光学成像和光谱实验室(导师:Francisco Robles 博士)2021 年 4 月 - 至今 • 负责开发多光谱深紫外显微镜用于前列腺基质组织的无标记生物分子分析的项目。在六种波长下对多个根治性前列腺切除术组织学载玻片进行成像,并使用主成分分析分析多光谱图像数据,以比较健康组织与侵袭性癌症的平滑肌结构。与埃默里大学的病理学家合作评估研究结果并征求反馈意见。向 2023 年美国和加拿大病理学会 (USCAP) 年会提交了第一作者海报摘要。 • 对前列腺癌反应性基质的生物学进行了全面的文献综述。通过在数字病理图像上创建注释并向领域专家寻求有关其准确性的反馈,成功学习了如何确定前列腺癌的格里森等级和其他组织学特征。 • 从头开始独立创建整个幻灯片成像仪。编写了用于与 PCO 和 ThorLabs 设备交互的驱动程序,设计了自动对焦算法,并在 MATLAB GUI 中自动进行平铺图像捕获。 • 独立培训了两名学生操作实验室的紫外显微镜系统。 佐治亚理工学院系统研究实验室(导师:张福民博士) 2019 年 1 月 - 2021 年 4 月 • 2021 年新奥尔良美国控制会议接受的论文的合著者,该论文介绍了一种新颖的无衍生多智能体跟踪策略。 亲自负责编写和测试佐治亚理工学院 Robotarium 机器人的 MATLAB 代码,以使用 3 个智能体执行跟踪策略。 为论文撰写了实验结果部分,以记录 Robotarium 实验成功证实了控制策略数学的理论预测。 • 致力于使用 Xbee 模块和 OptiTrack 摄像头在物理 GT-MAB 飞艇上实现多智能体 2D 源搜索算法的 MATLAB 代码。 出版物
致谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。必须从来源处获得复制本出版物中的插图和其他材料的许可。图 4-7,霍曼转移,Damon,Thomas D.(2001)太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/ 。图 4-8,快速转移,Damon,Thomas D.(2001)太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/ 。图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html 。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html 。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif 。
鸣谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。复制本出版物中的插图和其他材料必须先获得来源方的许可。 图 4-7,霍曼传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 4-8,快速传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif。