作为一种模型生物,果蝇在帮助我们理解大脑如何控制复杂行为方面具有独特的贡献。它不仅具有复杂的适应性行为,而且还具有独特强大的遗传工具包、日益完整的中枢神经系统密集连接组图谱和快速增长的细胞类型转录组谱。但这也带来了一个挑战:鉴于可用数据量巨大,研究人员如何查找、访问、整合和再利用 (FAIR) 相关数据,以便开发电路的综合解剖和分子图像、为假设生成提供信息并找到用于测试这些假设的实验试剂?虚拟蝇脑 (virtual fly brain.org) 网络应用程序和 API 为这个问题提供了解决方案,它使用 FAIR 原理整合神经元和大脑区域的 3D 图像、连接组学、转录组学和试剂表达数据,涵盖幼虫和成虫的整个中枢神经系统。用户可以通过文本搜索、单击 3D 图像、按图像搜索和按类型(例如多巴胺能神经元)或属性(例如触角叶中的突触输入)查询,按名称、位置或连接性搜索神经元、神经解剖学和试剂。返回的结果包括可在链接的 2D 和 3D 浏览器中浏览或根据开放许可下载的交叉注册 3D 图像,以及从文献中整理的细胞类型和区域的详细描述。这些解决方案具有可扩展性,可以涵盖脊椎动物中类似的图谱和数据集成挑战。
RNA 干扰 (RNAi) 仍然是一种强大的技术,可通过 mRNA 降解来有针对性地减少基因表达。该技术适用于多种生物,在物种丰富的鞘翅目 (甲虫) 中非常有效。在这里,我们总结了在新生物中开发该技术的必要步骤,并说明了它在水生潜水甲虫 Thermonectus marmoratus 的不同发育阶段中的应用。可以通过针对已知基因组的近亲或从头组装转录组来经济高效地获得目标基因序列。候选基因克隆利用特定的克隆载体 (pCR4-TOPO 质粒),该载体允许使用单个通用引物为任何基因合成双链 RNA (dsRNA)。合成的 dsRNA 可以注射到胚胎中用于早期发育过程,也可以注射到幼虫中用于后期发育过程。然后,我们说明如何使用琼脂糖固定将 RNAi 注射到水生幼虫中。为了演示该技术,我们提供了几个 RNAi 实验示例,生成具有预测表型的特定敲低。具体来说,晒黑基因 laccase2 的 RNAi 会导致幼虫和成虫的角质层变浅,而眼色素沉着基因 white 的 RNAi 会导致眼管变浅/缺乏色素沉着。此外,关键晶状体蛋白的敲低会导致幼虫出现视力缺陷和捕猎能力下降。综合起来,这些结果体现了 RNAi 作为一种工具的强大功能,可用于研究仅具有转录组数据库的生物体的形态模式和行为特征。
基于 CRISPR 的归巢基因驱动可以设计为破坏必需基因,同时偏向其自身的遗传,从而在实验室中抑制蚊子种群。这类基因驱动依赖于 CRISPR-Cas9 对目标序列的切割和从同源染色体中复制(“归巢”)基因驱动元件。然而,预计对切割有抗性但仍保持必需基因功能的靶位突变将被强烈选择。针对不易容忍突变的功能受限区域应该会降低抗性的概率。序列水平的进化保守性通常是功能约束的可靠指标,尽管一个保守序列与另一个保守序列之间实际的潜在约束水平可能有很大差异。在这里,我们在疟疾媒介冈比亚按蚊中生成了一种新型成虫致死基因驱动 (ALGD),其靶向蚊子发育过程中所需的单倍体必需基因 (AGAP029113) 中超保守的靶位,该基因满足种群抑制基因驱动靶位的许多标准。然后,我们设计了一种选择方案,以实验性地评估在其靶位产生和随后选择基因驱动抗性突变的可能性。我们在笼养种群中模拟了基因驱动接近固定的情景,其中对抗性的选择预计最强。对目标基因座的连续采样显示选择了单个、恢复性的、符合框架的核苷酸替换。我们的研究结果表明,仅靠超保守并不能预测对靶位抗性具有抗性的位点。我们的体内抗性评估策略有助于验证候选基因驱动目标的抗性恢复力,并有助于改善对野外种群中基因驱动入侵动态的预测。
澳大利亚松木麻黄 Casuarina equisetifolia 是一种生长迅速的物种,它们在受干扰的地区定居,形成密集的林分,生物多样性较低。它在佛罗里达、南非、巴西和加勒比地区具有入侵性,影响当地的动植物和土壤。褐家鼠 Rattus norvegicus 是一种全球臭名昭著的入侵外来物种。褐家鼠对包括海鸟在内的当地野生动物造成不利影响,但也对人类造成滋扰,它们以种子和储存的食物为食,还会破坏电线。作为昆虫害虫的生物防治剂引入的海蟾蜍 Rhinella marina 本身也成为了害虫,以陆生动物为食并与当地两栖动物竞争。它们的有毒分泌物会导致家畜和野生动物患病和死亡。吞食卵或成虫会导致人类死亡。火蚁 Solenopsis invicta 原产于南美洲。它们的刺痛感很痛,会对野生动物和人类造成不利影响。它们迅速蔓延,形成大型群落,几乎可以吃掉任何东西。它们的刺可以让它们占领食物来源并避免竞争。火蚁现在是美国南部、加勒比地区以及澳大利亚和亚洲部分地区的一个主要问题。热带花蜱 Amblyomma variegatum 起源于非洲,可以给家养动物和人类传播疾病。它携带一种引起心水病的微生物,会导致皮肤问题、体重减轻甚至死亡。农民应该警惕这种蜱虫,并采取措施保护他们的动物。野生罗望子 Leucaena leucocephala 是一种原产于墨西哥的小乔木,由于它对受干扰区域的积极殖民化并对次生植被造成严重破坏,在许多国家被视为入侵物种。
抗寄生虫药物伊维菌素在全球人类和动物健康中发挥着重要作用。然而,伊维菌素耐药性在兽医蠕虫中普遍存在,人们越来越担心人类相关蠕虫对治疗的反应不佳。尽管经过了几十年的研究,但人们对寄生蠕虫对伊维菌素耐药性的遗传机制仍知之甚少。这反映了伊维菌素在寄生蠕虫中的作用方式以及这些生物的遗传复杂性存在很大的不确定性;寄生蠕虫具有庞大且快速进化的基因组,进化历史和遗传背景的差异可能会混淆耐药性和易感种群之间的比较。我们对一种具有多重耐药性的绵羊胃肠道线虫——捻转血矛线虫(Haemonchus contortus)的敏感参考分离株进行了受控遗传杂交,并用伊维菌素选择了 F2 种群,以便与未经治疗的 F2 对照进行比较。所有种群的雌性和雄性成虫的 RNA 测序分析发现,亲本分离株之间的转录组分化程度很高,但在 F2 中这种分化显著降低,从而可以识别出与伊维菌素抗性特别相关的差异。在所有抗性种群中,单个基因 HCON_00155390:cky-1(一种假定的咽部表达的转录因子)均在 V 染色体上的一个狭窄位点上呈组成性上调,而该位点此前已被证明受到伊维菌素的选择。此外,我们检测到了抗性和易感种群之间基因表达的性别差异,包括仅在抗性雄性中 P 糖蛋白 HCON_00162780 : pgp-11 的组成性上调。在伊维菌素筛选后,我们确定了在神经元功能和氯离子稳态中发挥作用的基因的差异表达,
“纯粹的喜悦”可能不是你期望在目的陈述中看到的第一个短语,但纯粹的喜悦是描述我第一次改变人类细胞基因组时感受的唯一方式。在我对这些细胞进行测序后,我的分析显示,经过数月的故障排除后,编辑效率仍未达到。这个秘密来自我找到并适应我们系统的新预印本,这意味着我们离理解一种假定的适应性变体在选择下在代谢中的作用如何发挥作用又近了一步。正是这种能够提出以前未知的问题,了解我们周围世界的工作方式,并真正得到答案的能力——即使在多次失败之后——促使我继续我的研究生生涯。除了进化生物学和基因组学之外,我无法想象自己能找到如此有趣的问题来解决,如此激发我整个大脑的问题。杜克大学的遗传学和基因组学系正在提出这些关于现实世界、基础生物学的广泛问题,这一事实让我深感兴奋,能够加入这个研究人员社区,他们不断致力于追求该领域的卓越。我第一次体验到这样一个社区能够理解这种似乎永无止境的求知欲望,那是在我第一次进行实地研究探险的时候。白天,我在落基山脉收集金鱼草杂交花,与维也纳科学技术研究所的 Nick Barton 博士实验室一起进行基因分型。晚上,我在夜间的实地团队晚餐上聆听了几个小时绝对迷人的博士后和研究生们热烈讨论生态学、杂交区和自然选择等各种问题。我只想成为他们中的一员,参与这些对话并做出有意义的贡献。自然而然,这种对科学的热爱让我在两个月后就周末在环境控制室里收集虫卵。从西班牙回来后,我找到了韦尔斯利学院生物系唯一的进化生物学家 Andrea Sequeira 博士。在她的实验室里,我深入研究了一个项目,研究两种克隆繁殖的入侵昆虫物种如何将其基因表达程序适应各种新宿主植物。我们能够观察到基因表达差异与可用宿主植物类型之间的关联,令人惊讶的是,这些基因表达差异在成虫和进食前的后代之间也存在。这是我第一次理解生态学、测序技术和进化生物学如何整合起来,提出任何领域都无法单独解决的问题。我将这个项目从实验台推进到分析阶段,最终完成了我的系荣誉论文、PLOS One 1 上的第一作者出版物,并在 2019 年国际进化会议上介绍了这个项目。在这里,我能够与不同的研究人员进行深入的对话,而这些对话曾经超出了我的理解范围,我们对解读生命复杂性有着共同的兴趣。这让我坚信,研究社区是唯一可以满足我一生继续研究进化问题的愿望的地方。虽然我是在 COVID-19 疫情期间毕业的,但我在麻省理工学院和哈佛大学布罗德研究所的 Pardis Sabeti 博士的实验室里找到了一个可以推动我发挥智力极限的新家。在这里,我开始研究基因组学的一个基本问题:DNA 序列如何影响基因表达?我为我们小组开发高通量 CRISPR 干扰筛选做出了贡献,该筛选可以识别任何基因的非编码调控元件,我作为共同作者在《自然遗传学》杂志上发表了描述该方法的论文 2,这反映了这一点。然后,我开始关注一个相关问题,即这些调控元件内的非编码人类变异如何影响基因表达,并开发了我尖端的分子基因组学方法和计算分析工具。我致力于优化 CRISPR-Cpf1 基因组编辑方法,以测试假定的因果非编码多态性的功能后果。利用这些等位基因