不成熟的标记 - TDT,CD34谱系特异性标记髓样-CMPO B细胞-CCD22/CCD22/CCD79A T细胞-CCD3谱系相关标记相关标记髓样-CONCON- COND13,CD13,CD13,CD33,CD117- CD14, CD4, cLysozyme Erythroid - CD36, CD71, CD105, CD235a (Glycophorin A), Hb Megakaryocytic - CD36, CD41, CD42, CD61 andCD62 B cell - CD19, CD22, CD20, cCD79a, CD10, cIgM, sIg T cell - Common - CD1a, CD2, CD5,CD7,CD10-其他 - CD4,CD8,CD3,NK Cell -CD16,CD56,CD57,CD57,CD94,CIR PDC -CD123,CD123,CD4,CD4,CD56,CD68,CD33,CD33,CD43,CD43,BDCA,BDCA, - PB SUBSET CD2,CD7,CD7,CD7,CD7
使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。应自行审查每个覆盖范围请求。医疗主管应在适当的情况下行使临床判断,并在做出个人覆盖范围确定方面酌情决定。如果保险或服务的保险不取决于特定情况,则仅在根据适用的覆盖范围政策中概述的相关标准(包括涵盖的诊断和/或程序代码)中概述的相关标准提交请求的服务。在此保险策略未涵盖的条件或诊断费用时,不允许报销服务(请参见下面的“编码信息”)。在计费时,提供者必须在提交生效日期起使用最适当的代码。提交的索赔为未伴随的服务范围的服务所提交的索赔
摘 要: 采煤机是综采工作面的核心装备,研发智能采煤机器人是实现综采工作面智能化的关键。 综合分析当前采煤机机器人化研究进程中的传感检测、位姿控制、速度控制、截割轨迹规划与跟 踪控制等技术的研究现状,提出研发智能采煤机器人必须破解的 “ 智能感知、位姿控制、速度控制、 截割轨迹规划与跟踪控制、位 − 姿 − 速协同控制 ” 五大关键技术,并给出解决方案。针对智能感知 问题,提出了构建智能感知系统思路,给出了智能采煤机器人智能感知系统的架构,实现对运行 状态、位姿、环境等全面感知,为智能采煤机器人安全、可靠运行提供保障;针对位姿控制问题, 提出了智能 PID 位姿控制思路,给出了改进遗传算法的 PID 位姿控制方法,实现了智能采煤机器 人位姿精准控制;针对速度控制问题,提出了融合 “ 力 − 电 ” 异构数据的截割载荷测量思路,给出 了基于神经网络算法的截割载荷测量方法,实现了截割载荷的精准测量;提出牵引与截割速度自 适应控制思路,给出了人工智能算法牵引与截割速度决策方法和滑模自抗扰控制的牵引与截割速 度控制方法,实现了智能采煤机器人速度精准自适应控制;针对截割轨迹规划与跟踪控制问题, 提出了截割轨迹精准规划思路,给出了融合地质数据和历史截割数据的截割轨迹规划模型,实现 了截割轨迹的精准规划;提出了截割轨迹精准跟踪控制思路,给出了智能插补算法的截割轨迹跟 踪控制方法,实现了智能采煤机器人截割轨迹高精度规划与精准跟踪控制;针对 “ 位 − 姿 − 速 ” 协同 控制问题,提出了 “ 位 − 姿 − 速 ” 协同控制参数智能优化思路,给出了基于多系统互约束的改进粒子 群 “ 位 − 姿 − 速 ” 协同控制参数优化方法,实现了智能采煤机器人智能高效作业。深入研究五大关键 技术破解思路,有利于加快推动研发高性能、高效率、高可靠的智能采煤机器人。
本综述承认了 Stephan Perren 的应变理论的巨大影响,并结合 Roux 和 Pauwels 的早期贡献进行了探讨。然后,通过研究反向动力化概念如何在现代背景下扩展 Perren 的理论,提供了进一步的见解。这一更现代的理论的一个关键因素是它在骨愈合过程中的不同时间点引入了可变的机械条件,从而有可能通过力学操纵生物学来实现预期的临床结果。讨论重点是当前的技术水平和最新进展,通过在愈合过程中主动控制机械环境来优化和加速骨再生。反向动力化采用非常特殊的机械操纵方案,最初条件灵活,以鼓励和加速早期骨痂形成。一旦骨痂形成,机械条件就会被有意修改,以创造一个刚性环境,在此环境中,软骨痂会迅速转化为硬骨痂,连接骨折部位并导致更快的愈合。调查了相关文献,主要是动物研究,以提供充足的证据来支持反向动力化的有效性。通过为 Stephan Perren 的应变理论提供现代视角,反向动力化或许是治疗急性骨折、截骨术、不愈合和其他需要再生骨骼的情况时实现更快更可靠的愈合的关键。
由于细胞抑制剂的肿瘤浓度不足,阻碍了实体瘤的有效全身药物治疗,因此需要开发智能局部药物输送系统。为了克服这个问题,我们证明了用于骨肉瘤治疗的基础药物阿霉素 (DOX) 表现出对纳米 (nHA) 和微米 (mHA) 尺寸的羟基磷灰石 (HA) 的可逆性增生。用 DOX 功能化的 nHA 颗粒被吞没在骨肉瘤细胞的溶酶体中,其中酸性微环境导致 DOX 和 HA 之间的结合中断。释放的 DOX 随后积聚在线粒体中,导致细胞饥饿、迁移减少和细胞凋亡。HA + DOX 输送系统还在患有骨肉瘤的小鼠身上进行了体内测试。通过 PET-CT 和增殖和凋亡标志物的免疫组织化学染色可以看出,通过 HA 颗粒局部输送 DOX 比对照组具有更强的肿瘤根除效果。这些结果表明,除了全身化疗外,辅助 nHA 可用作 DOX 细胞内输送的载体,以预防骨肉瘤手术切除后的肿瘤复发。此外,我们证明 nHA 颗粒是这种方法的关键,但 nHA 与 mHA 的组合可以提高与颗粒纳米材料相关的安全性,同时保持相似的治疗潜力。
摘要 骨量下降与衰老和骨质疏松症有关,骨质疏松症是一种以骨骼逐渐衰弱和骨折发生率增加为特征的疾病。骨骼的生长和终生稳态依赖于不同细胞类型之间的相互作用,包括血管细胞和间充质基质细胞 (MSCs)。由于这些相互作用涉及 Notch 信号传导,我们探索了用分泌的 Notch 配体蛋白治疗是否可以增强成年小鼠的成骨作用。我们发现,一种靶向骨的、高亲和力的配体 Delta-like 4,称为 Dll4 (E12) ,可诱导雄性小鼠的骨形成,而不会对其他器官造成不良影响,因为已知这些器官依赖于完整的 Notch 信号传导。由于骨表面较低,从而导致 Dll4 (E12) 的保留减少,同样的方法无法促进雌性和卵巢切除小鼠的成骨作用,但与甲状旁腺激素结合可大大增强小梁骨形成。基质细胞的单细胞分析表明,Dll4 (E12) 主要作用于 MSC,对成骨细胞、内皮细胞或软骨细胞的影响相对较小。我们认为,通过骨靶向融合蛋白激活 Notch 信号可能具有治疗作用,并且可以避免对其他器官中 Notch 依赖性过程产生有害影响。
简介:实现主要稳定性,它是指放置后立即植入牙齿的机械稳定性,对于成功的骨整合至关重要,尤其是在立即植入物和骨质受损的情况下。然而,尽管牙科植入技术的进步,但对植入物放置过程中骨骼植入物相互作用及其对主要稳定性的影响的知识有限。为了满足这一需求,本研究旨在研究新的锥形植入物设计的主要稳定性(B,Thommen Medical AG,图。1A)使用虚拟稳定性测试。圆柱植入物设计(A,Thommen Medical AG,图1a)用作对照。使用了源自不同钻孔方案的三种不同截骨术类型I,II和III(图1B)。方法:本研究评估了四种植入物 - 骨切开术组合的主要稳定性(AI,AII,BII,BIII,图。1ab)在牛小梁骨样品中使用实验和有限元分析的ABAQUS/显式分析的组合。该低密度骨模型被细分为两个BV/TV(骨体积/总体积)范围:0.16-0.26和0.27-0.38。为了评估一级稳定性,通过将植入物垂直取代其轴直至塌陷,将植入物骨系统加载到压缩模式下。因此,将骨样品从µCT扫描中重建,转换为有限元网格,并与植入物结合到模拟模型。将植入物建模为刚体。该研究量化了四种保留的植入术组合的插入扭矩(IT),刚度(K)和最终推入/拉出力(UF)。最终力(UF)可以用作主要稳定性的客观指标,因为它可以量化植入物骨骼分数的承重能力。使用与盒子图所示的成对比较,使用了指定的BV/TV范围内不同版本的性能,采用了描述性统计。