摘要 目标 为了在计算资源的获取方面公平地采用医学人工智能 (AI) 算法,所提出的方法基于二维 (2D) 卷积神经网络 (CNN),该方法可以更快、更便宜、更准确地检测早期阿尔茨海默病 (AD) 和轻度认知障碍 (MCI),而无需使用大型训练数据集或昂贵的高性能计算 (HPC) 基础设施。方法 所提出的模型使用标准化的阿尔茨海默病神经影像学计划 (ADNI) 数据集,并使用 Brain Extraction Tool V.2 方法进行额外的头骨剥离。2D CNN 架构基于 LeNet-5,使用了 Leaky Rectified Linear Unit 激活函数和 Sigmoid 函数,并在每个卷积层之后添加了批量归一化以稳定学习过程。通过手动调整所有超参数对模型进行了优化。结果 从准确率、召回率、精确率和 f1 分数方面对模型进行了评估。结果表明,该模型预测 MCI 的准确率为 0.735,通过了 0.521 的随机猜测基线,预测 AD 的准确率为 0.837,通过了 0.536 的随机猜测基线。讨论 所提出的方法可以帮助临床医生在 AD 和 MCI 的早期诊断中具有足够高的准确率,基于相对较小的数据集,并且不需要 HPC 基础设施。这种方法可以减轻差异并实现医疗算法采用的公平性。结论 医疗 AI 算法不应只关注准确性,还应评估它们如何影响差异并在采用过程中实现公平性。
抽象的智能手机接收器包括大约15亿个全球赛车卫星系统接收器。智能手机接收器的信号水平较低,噪音较低,而噪声则比Commer CIAL接收器更高。由于对尺寸,重量,功耗和成本的限制,与这些接收器进行准确的定位尤其是在城市环境中,这是一项挑战。传统上,全球定位系统测量方法是通过基于模型的方法(例如加权最小二乘和卡尔曼过滤方法)处理的。基于模型的方法可以以后处理方式提供仪表级的定位精度,但这些方法需要对相应的噪声模型进行牢固的假设,并且需要对参数(例如协方差)进行手动调整。相比之下,已经提出了基于学习的方法,这些方法对数据结构做出了更少的假设,并且可以准确地对环境特定的错误进行建模。但是,这些方法比基于模型的方法提供了较低的精度,并且对初始化敏感。在本文中,我们提出了一个用于学习校正的混合框架,该框架对应于真实接收器姿势和估计位置之间的偏移。对于基于学习的方法,我们提出了一个图形卷积神经网络(GCNN),该神经网络可以学习具有多构造和多频信号的不同图形结构。为了更好地对GCNN进行初始化,我们使用Kalman滤波器来估计一个粗糙的接收器位置。然后,我们使用此粗糙接收器位置来调节输入特征到图。我们从Google智能手机分解挑战中测试了对现实世界数据集的建议方法,并比基于模型的方法(例如加权最小二乘和卡尔曼过滤器方法)显示出改进的定位性能。
6 管道 24 6.1 确定空气动作 24 6.2 连接供给端口 25 6.3 清洗单作用执行器 25 6.4 通风设计 25 7 电气连接 27 7.1 电气端子 27 7.2 命令输入 (4-20 Ma) 连接 27 7.3 多功能卡 (AO、DO、DI) 29 7.4 V 至 I 卡连接 31 7.5 限位开关 32 7.6 远程安装 33 7.7 本质安全操作连接 33 8 启动 34 8.1 快速启动说明 34 8.2 本地用户界面概述 34 8.3 配置开关设置 35 8.4 行程校准 36 8.5 模拟输出 (AO) 校准 37 9 定位器功能(无需显示) 38 9.1 实时手动调整(调整增益) 38 9.2 阀门位置的本地控制 38 9.3 命令源重置 38 9.4 工厂重置 38 9.5 查看版本号 38 9.6 模拟输入校准 39 9.7 选择和校准模拟输出 39 9.8 选择离散输出 39 10 定位器功能(LCD 显示屏) 40 10.1 主显示屏视图 40 10.2 菜单概览 42 10.3 菜单功能 43 11 Hart 通信 49 11.1 Valvesight DTM 49 11.2 Hart 375/475 手持式通信器 49 11.3 更改 Hart 版本 49 11.4 突发模式 50 12 型号功能 51 12.1 MD+ 定位器诊断级别 51 12.2 Valvesight DTM 诊断级别 51 13 多功能卡 52 13.1 模拟输出 (AO) 52 13.2 离散输出 (DO) 52 13.3 离散输入 (DI) 52 14 V 至 I 卡 53 15 限位开关 53 15.1 限位开关操作 53 15.2 限位开关类型 53
近年来,在摄影成像中使用机器学习(ML)技术的使用激增。作为评估潜在冠状动脉疾病(CAD)患者的成像方式的数量,并且该技术继续改善,在做出临床判断时,可以考虑大量数据。但是,大量变量和越来越多的成像数据可以使准确评估患者的挑战。人工智能(AI)和ML可以通过基于广泛的临床和成像变量的有用提示来帮助这一过程[1]。的确,ML算法已被证明是患者风险分层和诊断评估中的宝贵工具[2,3]。冠状动脉层析成像血管造影(CCTA)是一种用于评估CAD冠状动脉动脉的非侵入性诊断程序。它具有高的负预测值,允许负CCTA结果有效排除显着的CAD [4,5]。另一个重要的非侵入性诊断测试是单光子发射计算机断层扫描(SPECT),它主要评估冠状动脉狭窄和指南管理的功能意义。使用CCTA和SPECT添加了疑问涉嫌CAD的患者对牙菌斑和灌注负担的评估[6-8]。普遍的临床预测方法通常涉及专家选择潜在的相关变量,然后进行回归/分类分析。Automl旨在减轻开发出良好表现ML管道所需的计算成本和人类专业知识[9,10]。ML的最新进展使这种经典的方法限制性(仅使用一种模型类型),效率低下(需要用于超参数的手动调整)并可能有偏见(预测指标前定位)。尽管医疗保健中基于ML的预测模型的进步,但采用这些模型的一个主要障碍是,其中许多被认为是“黑匣子”,这是指缺乏可解释性[11]。呼吁对这些模型的运作方式进行更多研究[12-15]。无法解释预测模型可以侵蚀对它们的信任,尤其是在决策可能会带来严重后果的心血管医学中。在医学中,黑匣子模型将发挥重要作用,在许多情况下,与我们缺乏完全生物学或临床理解的其他领域没有太大的不同[16]。但是,就像了解疾病和疗法背后的机械主义是有益的一样,对ML模型如何得出的结论有了更大的了解[17]也是有帮助的。对可解释的ML的研究激增,以解决这个问题[18]。已经开发了探索AI预测背后推理的各种方法[19,20]。一种有效的方法是建立一个次要,更透明的模型,例如决策树或随机森林,输入