^阳性血清学(抗HCV IgG阳性)必须进行HCV RNA测试。测试抗HCV IgG阳性但HCV RNA检测阴性的个体可以被认为是非携带者。他们需要从认证医生那里获得医疗报告,以清除丙型肝炎感染。
摘要:脑机接口 (BCI) 系统通过检索脑电波并将其解释为机器指令来控制外部设备。该系统利用脑电图 (EEG) 接收、处理和分类信号,通过大脑产生的信号进行控制。本文重点介绍 BCI 的心理任务设计,通过放置在三维 (3D) 打印耳机上的 EEG 梳状电极获取心理活动产生的信号。实验涉及眨眼左眼和右眼来控制原型轮椅的前后移动。实验测量是使用 Cyton 板进行的,信息通过蓝牙传输,随后经过处理并翻译给轮椅以执行活动。该系统已成功实现利用大脑信号对辅助设备的实时控制。关键词:辅助设备;脑机接口;Cyton;心理活动;心理任务;轮椅。
摘要:无线电探测和测距(雷达)技术的发展使得手势识别成为可能。在基于热图的手势识别中,特征图像尺寸很大,需要复杂的神经网络来提取信息。机器学习方法通常需要大量数据,而用雷达收集手势非常耗时耗能。因此,提出了一种基于调频连续波(FMCW)雷达和合成手势特征生成器的低计算复杂度手势识别算法。在低计算复杂度算法中,对雷达原始数据实施二维快速傅里叶变换以生成距离-多普勒矩阵。之后,应用背景建模来分离动态物体和静态背景。然后选择距离-多普勒矩阵中幅度最高的箱来定位目标并获得其距离和速度。可以利用天线维度上此位置的箱来使用傅里叶波束控制计算目标的角度。在合成生成器中,使用Blender软件生成不同的手势和轨迹,然后直接从轨迹中提取目标的距离、速度和角度。实验结果表明,当以合成数据作为训练集,以真实数据作为测试集时,模型在测试集上的平均识别准确率可达89.13%。这表明合成数据的生成在预训练阶段可以做出有意义的贡献。
摘要 在各种潜在的安全关键场景中,对机器人进行有效的人工监督是确保机器人正确运行的关键。本文通过结合两种人体生物信号流(分别通过 EMG 和 EEG 获得的肌肉和大脑活动),朝着快速可靠的人工干预监督控制任务迈出了一步。它介绍了使用肌肉信号对左手和右手手势进行连续分类、使用脑信号(在观察到错误时无意识产生)对错误相关电位进行时间锁定分类,以及结合这些管道在多项选择任务中检测和纠正机器人错误的框架。以“即插即用”的方式评估由此产生的混合系统,其中 7 名未经训练的受试者监督执行目标选择任务的自主机器人。离线分析进一步探索了 EMG 分类性能,并研究了选择可能促进可推广的即插即用分类器的训练数据子集的方法。
人工智能技术有潜力帮助聋哑人士交流。由于手势碎片化的复杂性和捕捉手势的不足,作者提出了一种基于 Deep SLR 的手语识别 (SLR) 系统和可穿戴表面肌电图 (sEMG) 生物传感设备,可将手语转换为印刷信息或语音,让人们更好地理解手语和手势。在前臂上安装了两个臂带,臂带上装有生物传感器和多通道 sEMG 传感器,可以很好地捕捉手臂和手指的动作。Deep SLR 在 Android 和 iOS 智能手机上进行了测试,并通过全面测试确定了它的实用性。Sign Speaker 在用智能手机和智能手表识别双手手势方面存在相当大的局限性。为了解决这些问题,本研究提出了一种新的实时端到端 SLR 方法。连续句子识别的平均单词错误率为 9.6%,检测信号并识别一个包含六个手势词的句子需要不到 0.9 秒的时间,证明了 Deep SLR 的识别能力。
我们设计了 DigituSync,这是一种被动外骨骼,可将两只手物理连接在一起,使两个用户能够实时自适应地传输手指运动。它使用多个四连杆来传输运动和力,同时仍保持一致的触觉反馈。此外,我们实施了一个可变长度的连杆,可以调整两个用户之间的力传输比并调节干预量,从而使用户能够定制自己的学习体验。DigituSync 的优势源于其被动设计:与现有的触觉设备(基于电机的外骨骼或电肌肉刺激)不同,DigituSync 几乎没有延迟,不需要电池/电子设备来传输或调整动作,使其在许多环境中部署都非常有用且安全,例如在学生和老师之间
印度迈索尔 Vidhyavardhaka 工程学院计算机科学系助理教授 5 摘要:目前已经存在许多手势识别系统,但在许多系统中,用户必须记住许多不同的手势符号,这使得识别变得非常困难。在本文中,我们仔细研究了人工智能在医疗保健领域的贡献,开发了一种使用手势与计算机通信的系统,该系统在技术上具有重要意义,也有助于视障人士。基于人工智能的空中手势键盘是一种包括空中书写的模型,它对于不允许用户在键盘上打字的用户界面特别有用。该系统使用与加速度计接口的 Arduino 板。它具有组合程序结构,可根据需要识别字母和数字。该模型维护一个数据集,以便以不同的方式实现每个手势,系统使用相同的手势进行多次训练以识别。然后可以分配此手势在计算机上执行任务,并使用算法从用户那里挑选输入。关键词:手势、人工智能、arduino、MPU6050。
摘要。人类行动识别在实现人类与机器人之间的有效和安全的合作中起着重要作用。例如,考虑一项协作的组装任务,人工可以使用手势与机器人进行通信,而机器人可以利用公认的行动来预测组装过程中的下一步,从而提高安全性和整体生产率。在这项工作中,我们提出了一个基于3D姿势和合奏技术的人类行动识别的新框架。在这种框架中,我们首先通过敞开和RGB-D数据估算人体和身体关节的3D坐标。然后将估计的接头馈送到一组源自Shift-GCN的图形卷积网络,这是每个关节集(即车身,左手和右手)的一个网络。最后,使用集合方法,我们平均所有网络的输出得分来预测最终的人类行动。在一个名为IAS-LAB协作HAR DATASET的专用数据集上评估了所提出的框架,该数据集包括在人机协作任务中常用的操作和手势。实验结果证明了不同动作识别模型的界面如何有助于提高整体系统的准确性和鲁棒性。
最近的研究提出了眼睑手势,帮助上肢运动障碍 (UMI) 患者无需手指触摸即可与智能手机互动。然而,这种眼睑手势是由研究人员设计的。目前尚不清楚 UMI 患者想要并能够做出什么样的眼睑手势。此外,其他颈部以上身体部位(例如嘴巴、头部)可用于形成更多手势。我们进行了一项用户研究,其中 17 名 UMI 患者为智能手机上的 26 个常用命令设计了颈部以上手势。我们总共收集了 442 个用户定义的手势,涉及眼睛、嘴巴和头部。参与者更有可能用眼睛做手势,并且更喜欢简单、易记且不太可能引起他人注意的手势。我们进一步进行了一项调查(N=24),以验证这些用户定义手势的可用性和接受度。结果表明,用户定义的手势对于有运动障碍和没有运动障碍的人来说都是可以接受的。
摘要 — 通过技术手段进行手臂和手部跟踪可以收集可用于确定手势含义的数据。为此,机器学习算法主要被研究以寻找最高识别率和最短识别时间之间的平衡。然而,这种平衡主要来自于统计模型,而统计模型很难解释。与此相反,我们提出了 µC 1 和 µC 2,两种基于几何模型的手势识别方法,支持识别过程的可视化和几何解释。我们将 µC 1 和 µC 2 与两种经典机器学习算法 k-NN 和 SVM 以及两种最先进的深度学习模型 BiLSTM 和 GRU 进行比较,实验数据集包含意大利手语 (LIS) 的十个手势类别,每个类别由五名没有经验的非母语手语者重复 100 次,并通过可穿戴技术(传感手套和惯性测量单元)收集。最终,我们在高识别率(> 90%)和低识别时间(< 0.1 秒)之间实现了折衷,这足以满足人机交互的需要。此外,我们基于几何代数详细阐述了算法的几何解释,这有助于对识别过程有所理解。