值得指出的是,第一批雷达系统早在 20 世纪 30 年代就已开发 [Watson-Watt 1945],从那时起,射频传感就已成为一个成熟的工程和应用科学领域。然而,目前的雷达硬件和计算方法主要是为主流雷达应用而开发的,这些应用通常涉及远距离检测和跟踪大型移动物体,例如空中和陆地交通管制、海事雷达、飞机防撞系统和外层空间监视以及地球物理监测等。此类应用的工程要求与现代消费应用不兼容,在现代消费应用中,传感器必须适合微型移动和可穿戴设备,在有限的计算资源上运行,在超短距离(即小于 5 毫米)内工作,消耗很少的功率,并以亚毫米精度跟踪复杂、高度可变形的弹性物体(例如人手而不是刚性飞机)的动态配置。我们不知道现有的雷达系统是否能满足上述要求。我们的研究表明,开发针对人机交互 (HCI) 优化的基于雷达的传感器需要从头开始重新思考和重新构建整个传感器架构,从基本原理开始。
通过在物理空间中玩耍和探索,互动教育空间正在成为一种培养儿童自然学习方式的机制。此类环境的先进互动模式和设备需要对儿童具有激励性和直观性。在各种各样的互动机制中,机器人因其对儿童的吸引力而成为教育工具领域的热门研究课题。然而,很少有研究关注儿童如何自然地与机器人互动和探索互动环境。虽然有大量关于成人全身互动和直观操纵机器人的研究,但还没有对儿童进行过类似的研究。因此,本文描述了一项手势诱导研究,该研究确定了儿童控制地面机器人时使用的首选手势和肢体语言交流。启发式研究的结果用于定义一种手势语言,该语言涵盖了不同年龄段和性别对手势的不同偏好,在 6-12 岁年龄段中具有良好的接受率。该研究还揭示了使用肢体动作的机器人互动空间,这是协作或远程学习活动的激励和有希望的场景。
随着技术的快速发展,我们在常规日常生活中使用的设备正在以蓝牙或其他无线技术的形式紧密包装。本文采用不同的方法来对鼠标的一般使用,而鼠标不需要鼠标。这可以通过虚拟软件来实现,该虚拟软件使用称为手势识别的概念并检测执行鼠标功能的手提示。手工检测技术并不新鲜,并且在行业中已经使用了很长时间,例如在自动化领域,IT枢纽,银行业,医学科学等。提出虚拟鼠标的主要动机是使用网络摄像机或内置摄像机与计算机进行交互以执行光标函数,例如滚动等。
随着数字环境已变得更加融合到我们的日常生活中,虚拟现实(VR),增强现实(AR)和混合现实(MR)平台在最近的十年中越来越受欢迎。新技术正在使用传感器技术调整这些范式,以获取有关2D和3D空间中位置跟踪的相关数据。在这种情况下,机器学习已成为具有可访问性和负担能力的关键技术。这些模型的使用提供了对传感器输入的准确解释,这可能会创建可靠的系统。在这项技术方面,特定的感兴趣领域是交互式游戏,以及系统如何从这些技术进步中受益以创造沉浸式体验。此外,Bowling等人的研究。(2006),探索计算机游戏中机器学习的领域,确定其在增强游戏智能和玩家参与度中的重要作用。
摘要 - 动态手势识别是签名者手的姿势,大小和形状的变化,引起的研究领域之一。在这封信中提出了用于动态手势识别的多幕后注意视频变压器网络(MSMHA-VTN)。使用变压器多刻录头注意模型提取了multiscale特征的锥体层次结构。所提出的模型对变压器的每个头部采用不同的注意力维度,使其能够在多尺度上提供注意力。此外,除了单一模态外,还检查了使用multiple模态的识别性能。广泛的实验表明,在NVMENTURE和BRIAREO数据集上,总体精度分别为88.22%和99.10%的总体精度,表现出了卓越的性能。
摘要。人类行动识别在实现人类与机器人之间的有效和安全的合作中起着重要作用。例如,考虑一项协作的组装任务,人工可以使用手势与机器人进行通信,而机器人可以利用公认的行动来预测组装过程中的下一步,从而提高安全性和整体生产率。在这项工作中,我们提出了一个基于3D姿势和合奏技术的人类行动识别的新框架。在这种框架中,我们首先通过敞开和RGB-D数据估算人体和身体关节的3D坐标。然后将估计的接头馈送到一组源自Shift-GCN的图形卷积网络,这是每个关节集(即车身,左手和右手)的一个网络。最后,使用集合方法,我们平均所有网络的输出得分来预测最终的人类行动。在一个名为IAS-LAB协作HAR DATASET的专用数据集上评估了所提出的框架,该数据集包括在人机协作任务中常用的操作和手势。实验结果证明了不同动作识别模型的界面如何有助于提高整体系统的准确性和鲁棒性。
摘要 — 脑机接口正被广泛用于各种治疗应用。通常,这涉及通过皮层脑电图 (ECoG) 或脑电图 (EEG) 等技术测量和分析连续时间脑电活动以驱动外部设备。然而,由于测量中固有的噪声和可变性,这些信号的分析具有挑战性,需要离线处理和大量计算资源。在本文中,我们提出了一种简单而有效的基于机器学习的方法,用于基于脑信号的手势分类示例问题。我们使用一种混合机器学习方法,该方法使用卷积脉冲神经网络,采用生物启发的事件驱动突触可塑性规则对脉冲域中编码的测量模拟信号进行无监督特征学习。我们证明这种方法可以推广到具有 EEG 和 ECoG 数据的不同受试者,并且在识别不同手势类别和运动想象任务方面实现了 92.74-97.07% 范围内的卓越准确率。索引词——脉冲神经网络、脑机接口、事件驱动可塑性、K 均值聚类
摘要。目的。运动脑机接口 (BCI) 是一种很有前途的技术,可以使运动障碍者与周围环境互动。BCI 可能会弥补手臂和手部功能的丧失,这是四肢瘫痪患者的首要任务。设计实时准确的 BCI 对于使此类设备在现实环境中有用、安全且易于患者使用至关重要。基于皮层脑电图 (ECoG) 的 BCI 是记录设备的侵入性和记录信号的良好空间和时间分辨率之间的良好折衷。然而,用于预测连续手部运动的大多数 ECoG 信号解码器都是线性模型。这些模型的表示能力有限,可能无法捕捉 ECoG 信号特征与连续手部运动之间的关系。深度学习 (DL) 模型在许多问题中都是最先进的,可以成为更好地捕捉这种关系的解决方案。方法。在本研究中,我们测试了几种基于 DL 的架构,以使用从 ECoG 信号中提取的时频特征来预测想象的 3D 连续手部平移。分析中使用的数据集是长期临床试验 (ClinicalTrials.gov 标识符:NCT02550522) 的一部分,是在对四肢瘫痪受试者的闭环实验中获得的。所提出的架构包括多层感知器 (MLP)、卷积神经网络 (CNN) 和长短期记忆网络 (LSTM)。使用余弦相似度离线比较了基于 DL 和多线性模型的准确性。主要结果。我们的结果表明,基于 CNN 的架构优于当前最先进的多线性模型。最佳架构利用 CNN 来利用相邻电极之间的空间相关性,并通过使用 LSTM 来受益于所需手部轨迹的顺序特性。总体而言,与多线性模型相比,DL 将平均余弦相似度提高了 60%,左手和右手分别从 0.189 提高到 0.302 和从 0.157 提高到 0.249。意义。这项研究表明,基于 DL 的模型可以提高 BCI 系统在四肢瘫痪受试者的 3D 手部翻译预测中的准确性。
在许多情况下,通过选择物理或触摸屏键盘上的精确位置来输入文本可能是不切实际的或不可能的。我们提出了一种具有四个字符组的歧义键盘,它可以用于免眼文本输入,以及使用单个开关或脑机接口的文本输入。我们开发了一种基于利用长跨度语言模型的消歧算法来优化这些字符分组的程序。我们在离线优化实验中生成了字母约束和不受约束的字符组,并在纵向用户研究中对它们进行了比较。经过四个小时的练习,我们的结果没有显示约束和不受约束的字符组之间有显著差异。如预期的那样,参与者在第一次训练中对不受约束的组的错误率明显更高,这表明学习这项技术的门槛更高。因此,我们推荐使用字母限制的字符组,参与者能够用单手且在没有视觉反馈的情况下实现每分钟 12.0 个单词的平均输入速度,字符错误率为 2.03%。
news = 57DCDA7A-BC5D-45C1-AB5B-A8143àb83df)。注意:材料可能已被编辑为长度和内容。有关更多信息,请联系引用的来源。