介电性手性超脸是一种新型的平面和高效的手性光学设备,显示出强圆形二分法或光学活动,在光学传感和显示中具有重要的应用潜力。然而,传统手性跨面中的两种类型的手性光学反应通常是相互依存的,因为它们对正交圆形极化组件的幅度和阶段的调节是相关的,这限制了芯Riral Meta-devices的进一步进展。在这里,我们提出了一种新的方案,用于独立设计手性跨膜的圆形二色性和光学活性,以进一步控制传输波的极化和波前。受到手性分子异构体的混合物的启发,我们使用介电异构体谐振器形成“超级单元”,而不是Terahertz带中的手性反应,而不是单个元原子,这被称为Racemic Metasurface。通过在元原子和“超级单元”之间引入两个级别的pancharatnam-berry阶段,可以在没有远场圆形二科运动的情况下进行极化旋转角度和梁的波前。我们通过模拟和实验证明了该方案的Terahertz波的强大控制能力。此外,这种具有近场手性但没有远场圆形二分法的新型设备在光学传感和其他技术中也可能具有重要价值。
Nielsen-Ninomiya 定理是高能和凝聚态物理中关于手性费米子在静态晶格系统中实现的基本定理。本文我们扩展了动态系统中的定理,其中包括静态极限中的原始 Nielsen-Ninomiya 定理。原始定理对于块体手性费米子来说是行不通的,而新定理由于动态系统固有的块拓扑而允许它们实现。该定理基于对偶性,可以统一处理周期性驱动系统和非厄米系统。我们还给出了受对称性保护的非手性无间隙费米子的扩展定理。最后,作为我们的定理和对偶性的应用,我们预测了一种新型的手性磁效应——非厄米手性磁肤效应。
在镜像细菌中,现有细菌的所有手性分子(蛋白质、核酸和代谢物)都被它们的镜像取代。镜像细菌无法从现有生命进化而来,但随着科学的进步,它们的创造将变得越来越可行。生物体之间的相互作用通常取决于手性,因此自然生物体与镜像细菌之间的相互作用与自然生物体之间的相互作用将大不相同。最重要的是,免疫防御和捕食通常依赖于手性分子之间的相互作用,而由于镜像细菌的手性相反,手性分子通常无法检测或杀死镜像细菌。因此,足够强大的镜像细菌可以在不受自然生物控制的情况下在环境中传播,并成为包括人类在内的前所未有的其他多细胞生物的危险机会性病原体,这似乎是合理的,甚至很有可能。
摘要:在Weyl Semimetals的磁催化场景的背景下,提出了一种在极高磁场处进行手性对称性恢复的新机制。与以前的提案相反,我们在这里表明,在非常大的磁场上,轴突场的横向速度,手性冷凝物的相模式⟨⟨⟨ψ电话,有效地变为一维及其波动破坏了该费米式冷凝物的可能的非零值。我们还表明,尽管有U(1)手性对称性未在极大的磁场上破裂,但系统的光谱由定义明确的无间隙波式激发,连接到轴轴模式,以及相关的绝缘纤毛液体与U(1)手性渗透性相关的纤毛液体。当该理论补充了动态电磁场的包含时,手性对称性再次被打破,并且可以恢复磁性催化的常规情况。
光子纳米结构与量子发射器之间的手性光 - 脱子相互作用显示出实现量子信息处理的自旋 - 光子界面的巨大潜力。量子发射极的位置依赖性自旋动量锁定对于这些手性耦合纳米结构很重要。在这里,我们报告了量子点(QD)和跨波导之间的位置依赖性手性耦合。选择在横截面中不同位置分布的四个量子点以表征设备的手性特性。定向发射是在单个波导和两个波导中同时实现的。此外,可以用四个输出的手性对比确定QD位置。因此,通过将QD放置在合理位置,跨波导可以充当单向单向波导和圆形极化的光束分离器,该位置具有潜在的应用程序,该QD在单个光子水平上的复杂量子光学网络中具有潜在的应用程序。
摘要:在本研究中,我们探索了 (1+1) 维 QED(大规模 Schwinger 模型)中有限温度下手性磁效应 (CME) 的实时动态。通过在淬火过程中引入手性化学势 µ 5,我们使系统失去平衡,并分析感应矢量电流及其随时间的变化。修改了哈密顿量以包括时间相关的手性化学势,从而允许在量子计算框架内研究 CME。我们采用量子虚时间演化 (QITE) 算法来研究热状态,并利用 Suzuki-Trotter 分解进行实时演化。这项研究深入了解了用于建模 CME 的量子模拟能力,并为研究低维量子场论中的手性动力学提供了途径。
碳基纳米结构可以根据其精确的键合结构显示出异常多样的特性。这包括石墨烯纳米带 (GNR),1-3 其中石墨烯晶格被限制为狭窄的一维条纹。具有扶手椅取向边缘的 GNR 显示出半导体带结构。相比之下,锯齿形甚至手性 GNR 是准金属的,并且会形成自旋极化边缘态,2-5 除非它们非常窄。在这种情况下,两侧的边缘态相互杂化,这会猝灭自旋极化并赋予带常规的半导体带结构。6,7 对于具有 (3,1) 手性矢量的带,维持准金属行为所需的最小宽度包括从一侧到另一侧的六条碳锯齿线。6 这一理论预测最近已通过合成和光谱表征 Au(111) 上不同宽度的 (3,1) 手性 GNR 得到实验证实。 8 然而,这些纳米带,就像纯锯齿状边缘的 GNR 9 或具有与周期性锯齿状边缘段相关的低能态的其他 GNR 10–12 一样,迄今为止仅在 Au(111) 上合成和表征。为了研究具有较低功函数的不同基底对纳米带电子特性的影响,我们在弯曲的 Ag 晶体 13 上合成了六条锯齿状线宽的 (3,1) 手性 GNR((3,1,6)-chGNR,图 1a),该晶体相对于中心 (111) 表面取向向两侧跨越高达 ±15 度的邻位角(图 1b)。整个晶体的合成都是成功的,但样品每一侧的不同类型的台阶对纳米带的优选方位角排列有不同的影响。这为我们提供了一个理想的样品,可通过角分辨光电子发射 (ARPES) 研究沿纳米带纵轴和垂直于纳米带纵轴的能带色散。我们使用的反应物是 2',6'-二溴-9,9':10',9”-四蒽 (DBTA,图 1a),合成方法见补充信息。8 它经过
化学响应阀是基于通道的微流体学的必不可少的设备。1-3这样的系统选择性地操纵/控制了由外部输入触发的一小部分液体内部的液体或隔室。通常,微流体阀是通过使用刺激反应性聚合物作为活性材料设计的。1,2不同的基于聚合物的阀,由电气4,5或磁场控制,6个红外光,7,8温度,9和pH 10。尽管如此,替代性响应式设备的设计,对不同和更复杂的物理化学参数(例如手性)敏感,这是一个有趣的挑战。手性是元素颗粒,分子甚至宏观物体的基本对称特性。11通常将系统定义为手性,如果它作为一对无法叠加的“左手”和“右手”的镜像图像(对映异构体)。由于它们在医学,化学或生物化学中的众多应用,手性分子引起了人们的关注。11,例如,对于生物系统,可以为定义的生物受体设计特定的药物化合物,其中手性用于调整相互作用的性质。12因此,对映体相互作用最终会控制和扰动生物学功能,因此,在生物系统中,对映认知至关重要。尽管已经开发出不同的光谱法来有效地鉴定手性探针,但13-
手性材料表现出自旋滤波效果,所谓的手性诱导的自旋选择性(CISS)。最近观察到手性超导体末端的自旋积累的观察到了研究超导体中CISS效应的新途径。在手性超导体中,旋转单链和自旋三阶阶参数的混合物显着影响超导性的特性。在本文中,我们研究了超导顺序参数与超电流诱导的自旋电流之间的相互作用,即超传递电流。在弱聚会混合的超导体中,自旋电流主要与温度无关,是由自旋极化的库珀对带有有限的质量中心动量的。相反,在强派对混合的超导体中,温度依赖性自旋电流还由具有相反动量的电子和反平行旋转形成库珀对。手性结构化超导体将为探索CISS效应提供新的平台,并可以更深入地了解其与平均混合订单的基本机制。