手性2D钙钛矿作为圆形极化的光致发光材料引起了极大的关注,但是这些材料通常在环境条件下表现出较弱的CPL。几项研究表明,使用强的外部磁场或低温可以增强CPL的程度。在这里,我们报告了一种通过使用极高的高压来调整手性2D钙钛矿的圆两极化的光致发光的方法。(S-和R-MBA)2 PBI 4钙钛矿表现出良好的光学可调性,其压力在PL波长,强度和带隙方面。极化分辨的光致发光测量表明,在环境压力下,CPL的程度从近乎零增加到8.5 GPA时高达10%。adxrd和拉曼结果表明,在施加压力时,结构失真和增加的层间耦合是造成增强性手性的。我们的发现提供了一种调整CPL材料并显示下一代CPL设备中潜在应用的新方法。
背景:搜索手性超导体有几个令人信服的理由,其中超导性与明显的时间反向对称性断裂并存。首先,在大多数固体中,与电子配对相关的能量尺度远小于典型的动力学能量,因此超导性的出现取决于电子分散体的退化:e(k)= e(-k)。这种情况让人联想到筑巢,最终受时间逆转或反转等对中的控制,这甚至使相对较弱的吸引人的相互作用甚至具有深远的影响。因此,在没有这种对称性的情况下,观察超偏性的观察强烈表明存在新的物理学。其次,寻找手性超导体与追求拓扑超导的追求密切相关,拓扑超导能力是一种凝结物理学的圣杯。具有无旋转单组分Fermi表面的二维超导体很可能表现出时间雷达对称性破坏P + IP配对。这种类型的超导性与涡流和边缘中Majorana零模式的存在有关,这是拓扑量子计算的关键资源。这种p波配对被认为是在超氟中实现的,在ν= 5
手性分子的准确检测,分类和分离是推进药物和生物分子创新的关键。设计的手性光提出了一种有希望的途径,以增强光与物质之间的相互作用,从而提供一种无创,高分辨率和具有成本效益的方法来区分对映异构体。在这里,我们提出了一个基于ACHIRAL等离子体系统的纳米结构平台,用于表面增强红外吸收吸收诱导的Vi-Brational圆形二色性(VCD)。该平台可以对对映体混合物的精确度量,分化和量化,包括浓度和对映体的多余确定。与常规的VCD光谱技术相比,我们的手性对映异构体的检测灵敏度高13个数量级的检测敏感性,这是相应的路径长度和浓度。该刺激性等离子体系统的可调光谱特性促进了多种手性化合物的检测。平台的简单性,可调节性和出色的灵敏度具有在药物设计,药物和生物应用中分类的巨大潜力。
Shuo Lou 1,2† , Bosai Lyu 1,2† , Jiajun Chen 1,2† , Xianliang Zhou 1,2† , Wenwu Jiang 3,4 , Lu Qiu 5,6 , Peiyue
rmf&fu,物理。修订版Lett。 127,047001(2021)Gali&Rmf,物理。 修订版 b 106,094509(2022)Hecker,Willa,Schmalian和Rmf,Phys。 修订版 b 107,224503(2023)Lett。127,047001(2021)Gali&Rmf,物理。修订版b 106,094509(2022)Hecker,Willa,Schmalian和Rmf,Phys。修订版b 107,224503(2023)
图1(a)手性绝缘体和金属的键合系统。手性绝缘子上的温度梯度会产生从手性绝缘体到金属的旋转电流。 (b)磁旋转效果的示意图。 (c)手性绝缘体中的声子分散。
摘要:手性是一个基本概念,渗透到物理、材料科学、化学和生物学等不同领域。本次演讲探讨了凝聚态系统中手性和拓扑之间的深刻联系。我将通过三个具体的例子来说明不同层面上的这种联系。首先,我将介绍一种新的手性二维材料,其中观察到拓扑非平凡能带特征,即 Kramers-Weyl。其次,我将讨论量子异常霍尔绝缘体,它展示了动量空间中的手性态如何转化为实空间中受拓扑保护的电子传输。这些手性电子态可用于构建非互易设备,从而实现固态量子计算机的扩展。最后,我将简要介绍一种跨学科方法,将分子级手性印入二维超导体中以得到手性超导体。这些手性超导体可用于构建未来的容错拓扑量子比特。
对手性光的兴趣日益增加,源于其沿繁殖方向的螺旋轨迹,从而促进了光与物质的不同极化状态之间的相互作用。尽管在手性光相关研究中取得了巨大成就,但手性脉冲的产生和控制却带来了持久的挑战,尤其是在Terahertz和紫外光谱范围内,由于缺乏合适的光学元素来有效的脉冲操纵。传统上,可以通过复杂的光学系统,外部磁场或超材料获得手性光,这需要复杂的光学配置。在这里,我们提出了一个多功能的可调性手性发射极,仅由两个平面Weyl Semimetals板组成,解决了两个光谱范围内的挑战。我们的结果为Terahertz和Ultra-Violet频率范围的紧凑型可调手性发射极平台开辟了道路。这一进步具有作为综合手性光子学的基石的潜力。
手性药物通常含有手性中心,以单一对映体或外消旋体的形式存在,与非手性药物相比,其在安全性和有效性方面具有显著优势,且立体选择性高。在这些药物中,手性不仅对溶解度和药代动力学特性有影响,而且对其靶标有特定的机制特征。我们注意到,近十年来,具有独特手性的小分子已成为FDA批准的抗肿瘤药物的新型组分,自批准以来,这些药物不断被探索以用于新适应症、新作用机制和新组合。本文总结了2011年至2019年FDA批准的22个手性小分子靶向抗肿瘤药物的最新研究进展,强调了它们的应用潜力和优势。我们相信这些最新成果可以为优化药物疗效、扩大临床应用、克服耐药性和提高未来手性靶向药物临床给药的安全性提供理论基础并激发研究兴趣。