液晶(LC)全息光栅用于多种光学应用,包括安全性,密码学,数据固定,光学过滤器和显示器。1–3通过两种相干激光束的干扰,将全息光栅放入LC,单体和引发剂的混合物中,这些激光束在单体和液晶的混合物中形成了空间调节的折射率变化。文献中已经报道了两种类型的全息图案液晶光栅:传播和反射光栅。在传输光栅中,两个相干激光束在同一样品区域上通过样品传输。对于反射光栅,将两个梁暴露于相反的样品平面,从而形成平行于样品表面的层结构。据报道,分层的液晶光栅是policryps(聚合物液晶聚合物切片)4-7或全息图
• 高速 FSK 协议,具有独特的抗噪性能 • 每个环路最多 254 个地址,可实现灵活的系统设计 • 按照卓越的海洋标准制造 • 屡获殊荣的双光学技术 • 现代、时尚的设计
背景:肝细胞癌(HCC)是癌症相关死亡的主要原因之一。Sorafenib是该疾病的一线疗法,与降低的治疗功效有关,可以通过与selumetinib结合来克服这种疗效。在这种情况下,这项工作的主要目标是开发一个新的纳米系统,该系统由含有靶向配体GalNAC的脂质双层涂层的聚合物核心组成,以专门有效地将两种药物分配到HCC细胞中,以显着提高其治疗效率。方法:混合纳米系统(HNP)的物理化学表征及其成分是通过动态光散射,ZETA电位,基质辅助激光解吸电离的电离 - 飞行质量光谱的时间 - 飞行质量光谱的时间和透射电子微观。细胞结合,摄取和HNP的特异性通过流式细胞和共聚焦显微镜评估。通过Alamar Blue Assay评估了治疗活性:通过:细胞活力;使用FITC-ANNEXIN V通过流式细胞术进行细胞死亡;胱天蛋白酶活性通过发光;通过流式细胞仪的线粒体膜电位;通过蛋白质印迹和分子靶水平。结果:获得的数据表明,这些混合纳米系统具有两种药物的较高稳定性和载荷能力,以及合适的理化特性,即在大小和表面电荷方面。此外,生成的制剂允许绕过耐药性并具有高特异性,从而促进了HCC细胞中的大细胞死亡水平,但不能在非肿瘤细胞中。通过增加的编程细胞死亡来实现共同载体药物的抗肿瘤作用的增强,这与线粒体膜电位的强烈降低相关,caspase 3/7和caspase 9的活性显着增加,并大量增加附属蛋白V-v-p-p-p-p-p-py-py-py-PORSISTIS的细胞。结论:开发的配方产生了较高且协同的抗肿瘤作用,揭示了改善针对HCC治疗方法的转化潜力。关键字:肝细胞癌,混合纳米系统,药物输送,Galnac,Sorafenib,Selumetinib
A prominent academic journal in the field of cancer immunotherapy has adopted the non-clinical research results of SAIL66, which uses the Dual-Ig technology, a unique antibody engineering technology made by Chugai Pharmaceutical, Non-clinical research suggests that SAIL66 has high selectivity for CLDN6 (claudin 6), and that it may exhibit a higher antitumor effect compared to conventional T-cell engagers by costimulating CD3和CD137目前,正在对CLDN6阳性固体癌
近 10 年国外重大李斯特菌疫情 国家 疫情年份 致病食物 患者人数 死亡人数 澳大利亚 2013 奶酪 18 2 丹麦 2013-2014 熟食肉类 41 17 美国 2014 豆芽 5 2 美国、加拿大 2014-2015 焦糖苹果 36 7 美国 2010-2015 冰淇淋 10 3 美国 2015 软奶酪 24 1 美国、加拿大 2015-2016 包装沙拉 47 1 美国 2013-2016 冷冻蔬菜 9 1 德国 2012-2016 疑似来自同一工厂的多种产品 66 3 澳大利亚 2018 甜瓜 20 7 南非 2017-2018 肉制品 1,060 216 丹麦、德国、法国2015-2018 熏制三文鱼 7 1 奥地利、丹麦、芬兰等 2015-2018 冷冻玉米 47 9 丹麦、爱沙尼亚、芬兰等 2014-2019 冷熏鱼制品 22 5 英国 2019 三明治和沙拉 9 6 西班牙 2019 熟肉制品 207 例确诊,3059 例高度疑似 3 美国、加拿大 2017-2019 熟鸡丁 31 2 荷兰、比利时 2017-2019 肉制品 21 3 美国、澳大利亚 2016-2019 金针菇 42 5 美国 2017-2019 煮鸡蛋 8 1 美国 2020-2020 熟食肉类 11 1 美国 2014-2022 预包装沙拉 18 3 英国2020-2022 熏鱼 12? 美国 2021-2022 冰淇淋 25 1 美国 2021-2022 熟食肉 14 1 美国 2023 奶昔 6 3 美国 2018-2023 绿叶蔬菜 19 0 瑞士 2022 熏鱼 20 ? 美国 2018-2023 桃子、油桃、李子 11 1 德国、荷兰、比利时、英国等 2012-2024 鱼制品 73 14 加拿大 2023-2024 冷藏杏仁奶等 20 3 美国 2024 熟食肉类 59 10 10
飞机电子系统在雷击放电过程中的性能主要由机身和尾翼材料的参数决定[1]。近年来,由复合材料(碳纤维和玻璃纤维)制成的飞机机身设计得到了广泛的发展[2]。复合材料在无人机制造中应用最为广泛。用复合材料制造飞机机身需要开发新的方向,以确保电磁影响和相互作用期间的电磁兼容性 [3, 4]。机载设备在外部电磁影响下的抗噪声能力决定了整架飞机运行的质量和可靠性。最危险的外部电磁影响类型之一是雷电放电的影响。雷电对飞机的影响可分为两个部分:间接雷电放电(其特征是飞机附近云层之间的放电)和直接放电到飞机机身中[4, 5]。由于复合材料在飞机结构中的使用,确保机载设备的抗噪性和飞机的抗雷击能力的任务呈现出新的形态。
[Abdurahman 20] Abdurahman, JK:论人工智能伦理的道德崩溃,Medium,https://upfromthecracks。 medium.com/on-the-moral-collapse-of-ai-ethics-791cbc7df872 (2020) [Ahmed 20] Ahmed, S., et al.: 检查估计肾小球滤过率计算中种族乘数利用率对非裔美国人护理结果的潜在影响, J. Gen. Intern Med., https://doi.org/10.1007/s11606-020-06280-5 (2020) [Aisch 17] Aisch, G., Buchanan, L., Cox, A. 和 Quealy, K.: 有些大学的前 1% 学生比后 60% 学生还多,找出你的大学,《纽约时报》,https://www. nytimes.com/interactive/2017/01/18/upshot/some- colleges-have-more-students-from-the-top-1- percent-than-the-bottom-60.html ( 2017 ) [Buolamwini 18] Buolamwini, J. 和 Gebru, T.: Gender Shades: 商业性别分类中的交叉准确度差异, Proc. of Machine Learning Research, 81:1-15, 2018 Conf.公平性、问责制和透明度,https://www.media.mit.edu/publications/gender-shades-intersectional-accuracy-disparities-in-commercial-gender-classification/ (2018 年) [Dand 20] Dand,M.:AI 伦理守门人的责任在哪里?, Medium,https://miad.medium.com/where-is-the-accountability-for-ai-ethics-gatekeepers-e696b8a80e62 (2020 年)
成像方式如今已成为医学中必不可少的诊断工具。从 2009 年到 2019 年,美国的 CT、MRI 和 PET 检查数量分别增加了约 18%、42% 和 105%(1)。这种不断增长的需求已经超过了实际供应,导致法国/欧洲的 MRI 和 PET 扫描不合理地延迟了数周甚至数月(2)。适当的图像去噪可能有助于减少扫描时间,甚至减少 PET 的注射剂量。它可以增加检查次数,而不会影响太多工作时间或需要安装新的医学成像设备。深度学习作为人工智能 (AI) 的一个分支,可以构建有前景的去噪模型。我们专注于 PET 成像,因为它的扫描时间较长,因此去噪效果会更好。尽管许多研究实际上都在研究这种方法的临床表现,但它也可能影响其他新兴领域,如基于成像的预测模型、放射组学和其他 AI 应用 (3)。医学图像基本上是基于其密度 (CT)、磁性 (MRI) 或功能信息 (PET/SPECT) 的不同灰度级的视觉表示。灰度值的分布表征了信息的异质性。一个快速发展的领域称为放射组学,它提供了一种从图像中提取基于强度、形状、纹理的不同特征的方法,以构建预测模型 (4)。这种方法有望预测患者的结果。它们可能允许个性化治疗。例如,在肺癌中计算了一个包括放射组学特征的总体生存预测模型(5)。2013 年至 2018 年间,该领域的发表论文年增长率为 177.82%(6)。这些模型非常有前景,但仍需付出一些努力才能在常规临床环境中转化和实施它们(7)。人工智能在医学成像领域的应用尚处于早期阶段。在本文中,我们使用了深度学习,更具体地说是卷积神经网络方法,它们代表了人工智能技术的一个细分领域。如今,深度学习在图像重建、处理(去噪、分割)、分析和预测建模中发挥着关键作用。这些应用在未来将得到进一步发展(8)。在大多数这些任务中,它们的表现往往优于更传统的方法 ( 9 )。将这种基于 AI 的 PET/MR 去噪算法与临床数据进行比较,发现对比度与噪声比增加了 46.80 ± 25.23%,而仅使用高斯滤波器的对比度与噪声比仅为 18.16 ± 10.02%(10)。在(10)中研究的其他方法,如引导非局部均值、块匹配 4D 或深度解码器,分别将 CNR 提高了 24.35 ± 16.30%、38.31 ± 20.26% 和 41.67 ± 22.28%。也可以在重建期间执行去噪,但这无法在现有机器上实现。最重要的限制是所有这些方法都缺乏 FDA 或 CE 认证。我们的研究重点是 Subtle PET™(Subtle Medical,美国斯坦福,由法国 Incepto 提供)。它是一款经 FDA 和 CE 批准的 FDG PET(11)后处理去噪软件,基于卷积神经网络(CNN),这是最常见的图像处理深度学习架构。
近年来,深度生成模型对工程和科学产生了深远的影响,彻底改变了图像和音频生成等领域,并提高了我们建模科学数据的能力。特别是,去噪扩散概率模型 (DDPM) 已被证明可以准确地将时间序列建模为复杂的高维概率分布。实验和临床神经科学也将受益于这一进步,因为准确建模神经生理时间序列,例如脑电图 (EEG)、皮层电图 (ECoG) 和局部场电位 (LFP) 记录及其合成生成可以实现或改进各种神经科学应用。在这里,我们提出了一种使用 DDPM 建模多通道和密集采样的神经生理记录的方法,该方法可以灵活地应用于不同的记录模式和实验配置。首先,我们表明 DDPM 可以为各种数据集 11 生成逼真的合成数据,包括不同的记录技术(LFP、ECoG、EEG)和物种(大鼠、猕猴、人类)。DDPM 生成的时间序列准确捕获单通道和多通道统计数据,例如频谱和 13 相位幅度耦合,以及细粒度和数据集特定特征,例如尖锐的波纹。14 此外,可以根据实验条件或大脑状态等其他信息生成合成时间序列。我们展示了 DDPM 在几种神经科学特定分析中的实用性和灵活性,例如大脑状态分类和缺失通道的归纳以改进神经解码。总之,DDPM 可以作为神经生理记录的精确生成模型,并且在概率生成合成时间序列以用于神经科学应用方面具有广泛的实用性。20
随着脑监测领域的快速发展,对处理相关信号的创新方法的需求日益增加。最近,图信号处理成为逐个信号分析的有力替代方案,它能够处理信号集合。对于自然接受图形表示的脑电图 (EEG) 信号尤其如此,每个电极对应一个图节点。这些信号经常被以重尾统计数据为特征的脉冲噪声破坏,从而导致传统去噪技术失败。为了解决这个问题,我们提出了一种基于分数低阶矩的有效正则化图滤波方法,该方法可以更好地适应重尾统计数据。对真实 EEG 测量结果(包括公开的 P300 数据集和癫痫信号)的实验评估表明,与成熟的 EEG 信号去噪方法相比,我们的方法具有更优异的去噪性能。
