因子:一种因素,如微生物、化学物质或辐射形式,其存在、过量存在或(在缺乏疾病中)相对缺失对于疾病的发生至关重要。厌氧菌:在缺氧条件下生长最好的生物。专性厌氧菌只能在缺氧条件下生长。分析流行病学:流行病学中寻找与健康相关的原因和影响的方面。使用提供基线数据的比较组来量化暴露与结果之间的关联,并检验有关因果关系的假设。分析研究:旨在识别和量化关联、检验假设和识别原因的比较研究。两种常见类型是队列研究和病例对照研究。抗毒素:含有针对特定毒素的抗体并中和毒素作用的药物。注射抗毒素并不总能使患者完全康复,因为抗毒素(如肉毒杆菌抗毒素)可能只与循环毒素结合,而不与已经与组织结合的毒素结合。 关联:两个或多个事件、特征或其他变量之间的统计关系。 发病率:发病率的一种变体,适用于在有限时间内观察到的狭义人群,例如在流行病期间。 B 条形图:变量不同类别大小的直观显示。变量的每个类别或值都用一个条形表示。 偏差:结果或推论与事实的偏差,或导致此类系统偏差的过程。数据收集、分析、解释、发布或审查过程中的任何趋势都可能导致得出与事实有系统差异的结论。 生物传播:传染源的间接媒介传播,其中病原体在传播给新宿主之前在媒介内发生生物学变化。沸腾:沸腾发生在 100 C(或 212 F)。C 携带者:没有明显疾病的人或动物,但携带特定传染源并能够将传染源传播给他人。携带者状态可能发生在
多态毒素是细菌战争的武器,用于限制竞争对手、帮助亲属选择和塑造细菌群落。多态毒素系统 (PTS) 在革兰氏阴性细菌中得到了充分研究,但对革兰氏阳性细菌的研究有限。在枯草芽孢杆菌中,已报道了几种毒素免疫蛋白对,包括 YeeF-YezG、YobL-Y、obK YxiD- YxxD。很少有研究描述这些毒素-免疫对的结构/机制细节。这种毒素需要 VII 型分泌系统。我们已经证明 YeeF 的 C 端结构域 (YeeF-CT) 含有具有 DNase 活性的毒素。YeeF-CT 的表达会导致大肠杆菌的生长缺陷并导致形态变化。而毒素-免疫对的共表达可恢复正常的细菌生长。在这里,我们报告了 YeeF-CT 与其同源抗毒素 YezG 结合的晶体结构,分辨率为 2.1 Å。晶体结构表明,毒素 (YeeF-CT) 在与其同源免疫蛋白 (YezG) 结合后会发生重大构象变化。比较结构分析表明,毒素的六个 β 片层(核酸酶活性所必需的)在与免疫蛋白结合后被撕裂成两个子域。这种机制不同于其他 II 型毒素-抗毒素系统,其中抗毒素的内在无序区域与毒素的活性位点结合,从而在空间上阻断其底物的结合。我们目前正在研究这种毒素-免疫蛋白对的结构指导详细表征。
摘要:先前已使用基于CRISPR的诱变方法获得了厌氧甲基菌质细菌中的靶向突变。在这项研究中,将来自Callanderi的RELB家庭毒素放置在甲型苯乙烯敏感启动子的控制之下,形成可诱导的反选择系统。该诱导系统与非复制性整合诱变载体相结合,以在limosum b2的Eubacterium B2中创建精确的基因缺失。这项研究中针对的基因是编码组氨酸生物合成基因HISI,甲醇甲醇转移酶和类cor我蛋白MTAA和MTAC的基因,以及编码MTTB-氨基甲基转移酶的MTCB,先前显示出MTTB-FAMILY甲基转移酶。HISI内的有针对性的缺失带来了预期的组氨酸成可营养,MTAA和MTAC的缺失都废除了甲醇的自养生长。MTCB的缺失被证明是消除了Limosum在L-肉碱上的生长。 在隔离转化菌落的初始选择步骤之后,仅需要一个单个诱导步骤才能获得所需靶标的突变菌落。 可诱导的反选择标记和非复制综合质粒的组合可以快速地编辑大肠杆菌。MTCB的缺失被证明是消除了Limosum在L-肉碱上的生长。在隔离转化菌落的初始选择步骤之后,仅需要一个单个诱导步骤才能获得所需靶标的突变菌落。可诱导的反选择标记和非复制综合质粒的组合可以快速地编辑大肠杆菌。
背景。白喉是一种可通过疫苗预防的疾病,仍然是一个全球性健康问题。菲律宾等中低收入国家对疾病模式缺乏了解。方法。我们对 2006 年至 2017 年期间菲律宾马尼拉大都会传染病转诊医院收治的临床诊断为白喉的患者的临床、微生物学和流行病学特征进行了回顾性分析。绘制了病例图,并将病例分布与人口密度进行了比较。通过多位点序列分型 (MLST) 检查了 2015 年至 2017 年之间的白喉棒状杆菌分离株。结果。我们研究了 2006 年至 2017 年期间收治的 267 名患者(范围:12-54 例/年)。病死率 (CFR) 为 43.8%(95% 置信区间,37.8-50.0%)。 10 岁以下儿童的病例数和病死率较高。死亡与入院延迟和缺乏白喉抗毒素有关。2015 年至 2017 年期间,共有 42 例实验室确诊病例。我们确定了 6 种多位点序列类型 (ST)。ST-302 最常见 (17/34, 48.6%),其次是 ST67 (7/34, 20%) 和 ST458 (5/34, 14%)。病例图显示,马尼拉大都会白喉患者分布广泛。人口稠密地区的病例数较高,但没有明显的 ST 类型聚集。结论。我们的分析表明,白喉在马尼拉大都会仍然流行,而且这种感染经常导致幼儿死亡。应优先考虑提高疫苗覆盖率和可持续供应白喉抗毒素。关键词。白喉;菲律宾;白喉抗毒素;MLST;疫苗接种。
描述和实现“非常规”的超导性仍然是量子多体物理学的最前沿挑战。在这里,我们使用统一的映射,并结合了有吸引力的Hubbard模型的完善性质,以严格证明具有低温配对密度波(PDW)相的哈密顿量。我们还表明,当应用于排斥哈伯德模型的广泛接受特性时,相同的映射会导致汉密尔顿表现出三胞胎D-Wave PDW超导性和非寻常的组合,而铁曲和抗毒素和抗毒素磁性自旋相关。然后,我们证明了D -Wave PDW的持续性,该pdw在大u上限制中从扩展T -J模型的映射中得出的哈密顿量。此外,通过对最近邻居的旋转电子迹象的策略操纵,我们说明了另一个力量的PDW超导性的可实现性。此处指出的不同磁性和外来配对相关性的交织可能与UTE 2(例如UTE 2)候选者的实验观察有联系。
I 型毒素-抗毒素 (TA) 系统通常由嵌入内膜的蛋白质毒素和直接与毒素 mRNA 相互作用以抑制其翻译的 RNA 抗毒素组成。在大肠杆菌中,symE/symR 被注释为具有非典型毒素的 I 型 TA 系统。SymE 最初被认为是一种内切核糖核酸酶,但预测其结构与 DNA 结合蛋白相似。为了更好地了解 SymE 的功能,我们使用 RNA-seq 检查异位产生它的细胞。尽管 SymE 会驱动基因表达的重大变化,但我们没有发现内切核糖核酸酶活性的有力证据。相反,我们的生化和细胞生物学研究表明 SymE 会结合 DNA。我们证明 symE 过表达的毒性可能源于其能够驱动严重的类核缩合,从而破坏 DNA 和 RNA 合成并导致 DNA 损伤,类似于过量产生类核相关蛋白 H-NS 的影响。总之,我们的结果表明 SymE 代表了一类广泛分布于细菌中的新型类核相关蛋白。
毒和抗菌淀粉样蛋白HCI G7淀粉样蛋白以神经退行性疾病的作用而闻名,是稳定的蛋白质原纤维,它们在物种中也具有重要的生理功能。在微生物中,它们充当毒力因子,增强感染并提出抗毒素药物的靶标,而抗毒素药物可能诱导的耐药性比杀菌治疗更少。使用X射线晶体学和冷冻术,我们发现了毒力淀粉样蛋白的意外结构多样性,包括超越规范性交叉β结构以外的新型交叉α纤维类。我们还从各种生物体中鉴定出抗菌肽(AMP),它们会自组合成淀粉样蛋白原纤维,将淀粉样蛋白与宿主防御联系起来。在有毒和抗菌淀粉样蛋白中,我们观察到响应环境线索的结构切换,提示动态调节机制。这些发现扩展了我们对淀粉样蛋白毒性,神经免疫性和进化的理解,同时为药物开发和功能性纳米材料提供了新的途径。
图1。N末端区域在K2免疫力中的重要性。 a)16个删除构建体的概述,每个删除构建体缺少K2 ORF内的区域(14-27密码子)(不绘制为刻度)。 将切除的段替换为编码Pro-Ala-Gly的框架内SBFI限制性位点,并将其放置在PRS423型载体上的GAL1半乳糖诱导启动子后面。 酵母转化后,在诱导含有1%半乳糖的培养基中培养了三种转化体,然后转移到补充10 A.U.的新鲜诱导培养基中。 K2毒素。 b)在24小时的过程中,在板块读取器中记录了毒素中的OD 600。 条形表示生物学三份的最终OD 600值的平均值,误差线表示±1标准偏差。 单个重复值显示为点。 wt:野生型K2,控制:空矢量。 c)该表提供了有关系统删除构建体的修改区域的第一个也是最后一个删除的密码子的信息。 请注意,第一个构造还省略了位置1的起始密码子。N末端区域在K2免疫力中的重要性。a)16个删除构建体的概述,每个删除构建体缺少K2 ORF内的区域(14-27密码子)(不绘制为刻度)。将切除的段替换为编码Pro-Ala-Gly的框架内SBFI限制性位点,并将其放置在PRS423型载体上的GAL1半乳糖诱导启动子后面。酵母转化后,在诱导含有1%半乳糖的培养基中培养了三种转化体,然后转移到补充10 A.U.的新鲜诱导培养基中。K2毒素。 b)在24小时的过程中,在板块读取器中记录了毒素中的OD 600。 条形表示生物学三份的最终OD 600值的平均值,误差线表示±1标准偏差。 单个重复值显示为点。 wt:野生型K2,控制:空矢量。 c)该表提供了有关系统删除构建体的修改区域的第一个也是最后一个删除的密码子的信息。 请注意,第一个构造还省略了位置1的起始密码子。K2毒素。b)在24小时的过程中,在板块读取器中记录了毒素中的OD 600。条形表示生物学三份的最终OD 600值的平均值,误差线表示±1标准偏差。单个重复值显示为点。wt:野生型K2,控制:空矢量。c)该表提供了有关系统删除构建体的修改区域的第一个也是最后一个删除的密码子的信息。请注意,第一个构造还省略了位置1的起始密码子。
植物免疫是一个多层次的过程,包括识别病原体的模式或效应物以引发防御反应。这些包括诱导通常会限制病原体毒力的多种防御代谢物。在这里,我们在代谢物水平上研究了大麦根与真菌病原体根腐病菌 ( Bs ) 和禾谷镰刀菌 ( Fg ) 之间的相互作用。我们发现大麦烷是一组以前未描述过的具有抗菌特性的罗丹烷相关二萜类化合物,是这些相互作用中的关键参与者。Bs 和 Fg 感染大麦根会引发 600 kb 基因簇中的大麦烷合成。在酵母和本氏烟中异源重建生物合成途径产生了几种大麦烷,包括功能最丰富的产品之一 19-b-羟基大麦三烯酸 (19-OH-HTA)。该簇二萜合酶基因的大麦突变体无法产生大麦烷,但出乎意料的是,Bs 的定植率却降低了。相比之下,另一种大麦和小麦真菌病原体禾谷镰刀菌在完全缺乏大麦烷的突变体中的定植率要高 4 倍。因此,19-OH-HTA 可增强 Bs 的发芽和生长,而抑制其他致病真菌,包括 Fg。显微镜和转录组学数据分析表明,大麦烷可延缓 Bs 的坏死营养期。综上所述,这些结果表明,诸如 Bs 之类的适应性病原体可以破坏植物的代谢防御,以促进根部定植。
营养物质的可用性是调节细胞整个代谢的关键因素。因此,养分的缺乏激活了特定的适应机制。严格的反应是控制和调节细菌应力条件适应的基本机制之一。严格的响应效应子是特定的核苷酸,四磷酸鸟苷和五磷酸鸟苷,统称为(p)PPGPP。These nucleotides, in E. coli , are synthesized by RelA and SpoT proteins using two different pathways, where RelA produces (p)ppGpp in response to the presence of uncharged tRNA in the ribosomal A-site, during amino acid starvation, or in response to pyruvate depletion during fatty acid starvation ( Kushwaha et al., 2019 ; Sinha et al., 2019 ).另一方面,斑点负责响应葡萄糖或脂肪酸饥饿以及其他几种压力条件(Potrykus and Cashel,2008年),负责(P)PPGPP的积累。此外,斑点也充当A(P)PPGPP水解酶(Potrykus and Cashel,2008年)。