1:使用单独的患者麦克风(如果有),或使用Eucast中可用的断点MIC,请参阅eucast:临床断裂点和抗生素剂量。如果病原体报告了对抗菌剂的中间敏感性 - 寻求专家建议(目标槽浓度可能更高)。由于对假单胞菌属的常规报告。对于某些药物,已包括这些靶标。2:使用高于20 mg/L的浓度,因为它们比断点麦克风高10倍以上,尽管毒性通常在50 mg/l以下不高。3:基于头孢洛齐浓度的目标浓度。
多年来,MIC-GUARD 作为原料粉末经过了广泛的实验室测试,并嵌入到各种涂层中。MIC-GUARD 最简单的结合方式是与 HDPE 粉末一起旋转衬在钢基材上。MIC-Guard 均匀分散在衬里内,可以为 HDPE 表面提供保护,防止生物膜形成。HDPE 中的 MIC-GUARD 使用 ASTM E2149 进行测试,这是在动态接触条件下确定抗菌剂抗菌活性的标准测试方法。MIC-GUARD 以可行的 0.2%、1% 和 3% 的比例加入 HDPE 中。所有样品都针对金黄色葡萄球菌进行了测试,并取样
Promicon项目旨在了解微生物组功能,以引导其表型生产生物聚合物,能量载体,原料和抗菌剂。它专注于使用高级数据挖掘,建模和机器学习分析关键物种和整个微生物。Promicon整合了合成生物学和代谢工程,以优化微生物群落以有效的代谢产物生产。该项目建立了一个标准化平台,用于定量单细胞和OMIC数据分析。其结果与欧盟的生物经济战略相吻合,促进了可持续的生物产品和循环经济。
Promicon项目旨在了解微生物组功能,以引导其表型生产生物聚合物,能量载体,原料和抗菌剂。它专注于使用高级数据挖掘,建模和机器学习分析关键物种和整个微生物。Promicon整合了合成生物学和代谢工程,以优化微生物群落以有效的代谢产物生产。该项目建立了一个标准化平台,用于定量单细胞和OMIC数据分析。其结果与欧盟的生物经济战略相吻合,促进了可持续的生物产品和循环经济。
简介抗生素耐药性是现代社会面临的一项重大全球健康挑战 [1,2],其主要原因是多重耐药 (MDR) 细菌(通常称为“超级细菌”)的出现、传播和持续存在。这些超级细菌是导致对常规治疗干预具有耐药性的感染的罪魁祸首。人类和动物健康中广泛且不加区分地使用抗生素,再加上抗生素研究缺乏创新(新型抗生素的引入减少就是明证),这是导致抗生素耐药性发展和传播的重要因素 [3]。我们必须加快努力,不仅要制定政策遏制抗生素的不当和不合理使用,还要着力开发能够有效对抗细菌感染的新型化学实体 [4]。肽脱甲酰酶 (PDf) 是一种金属酶,它通过将蛋氨酸上的末端 N 残基转化为甲酰基部分来调节蛋白质成熟 [5,6],作为开发新型抗菌剂的靶标具有巨大的潜力(图 1)。最初人们认为 PDf 只存在于细菌中,而且缺乏针对性药物,因此它被视为开发新型抗菌剂的希望之光 [7-9]。尽管在真核生物中已经鉴定和表征了功能性 PDf 同源物,包括人类的线粒体异构体 [10-14],这对将该酶明确指定为相关的抗生素靶点提出了挑战,但酶学和结构研究表明,原核细胞和细胞器细胞之间 PDf 配体结合位点存在显著差异 [15-17],证实了该酶作为引人注目的相关治疗靶点的地位。
PACS 87.85.qr,87.85.rs a a型石墨烯和氧化石墨烯由于其独特的物理化学特性而在各种生物医学范围内已成为有前途的材料。本综述概述了它们在基因输送,组织工程,生物传感器以及抗菌和抗菌剂中的利用。在基因递送中,基于石墨烯的材料提供了有效的递送平台,具有增强的细胞摄取和最小的细胞毒性,这在基因疗法方面有希望的进步。此外,在组织工程,石墨烯和氧化石墨烯中,具有出色的生物相容性,电导率和机械性能,促进细胞粘附,增殖和组织再生的分化。此外,基于石墨烯的生物传感器表现出较高的灵敏度,选择性和稳定性,可快速,准确地检测生物分子以实现诊断和治疗目的。这篇评论重点介绍了石墨烯和氧化石墨烯在革新生物医学技术方面的最新进步,挑战和未来的前景,为医疗保健中创新的解决方案铺平了道路。k eywords石墨烯,氧化石墨烯,复合材料,纳米结构,生物相容性,生物医学应用,作者认识圣彼得堡州立大学进行研究项目11602266。f或引用Semenov K.N.,Ageev S.V.,Shemchuk O.S.,Iurev G.O.,Abdelhalim A.O.E.,Murin I.V.,Kozhu-Khov.p.k.,Penkova A.V.,Maystrenko D.N.纳米系统:物理。化学。数学。,2024,15(6),921–935。基于石墨烯的纳米材料在基因输送,组织工程,生物传感和开发抗菌剂中的生物医学应用。
摘要 微生物生物膜是包裹在细胞外基质内的复杂而有结构的微生物群落,由于其广泛存在并对包括制药在内的各个行业产生重大影响而受到关注。本研究旨在探讨微生物生物膜在制药应用中的挑战、机制和创新解决方案。生物膜的形成涉及附着、定植、成熟和分离的顺序过程,由复杂的微生物相互作用和胞外聚合物 (EPS) 的分泌驱动,对此进行了详细讨论。在制药领域,生物膜在多个方面带来了显著的挑战。最关键的问题之一是生物膜相关微生物对抗菌剂的耐药性增强。EPS 基质充当屏障,阻止药物渗透并保护细胞免受抗生素的影响。这种耐药性导致与医疗器械、慢性伤口和各种生物膜介导疾病相关的持续性感染。在制药制造中,生物膜会污染生产场所、设备和药品,导致药品质量和安全性受损。此外,生物膜的存在使药物测试和开发变得复杂。传统方法主要侧重于浮游细胞,可能无法准确预测新药对生物膜相关感染的疗效,因此需要开发创新的测试方法。为了应对这些挑战,专业人士正在积极探索预防、管理和治疗生物膜相关问题的策略。这些方法包括破坏生物膜的形成、增强药物通过 EPS 基质的渗透性以及开发专门针对生物膜的新型抗菌剂。此外,成像技术和生物材料设计的进步为制药行业监测和预防生物膜的形成提供了有希望的途径。
2. Gautret P、Lagier JC、Parola P、Hoang VT、Meddeb L、Mailhe M、Doudier B、Courjon J、Giordanengo V、Vieira VE、Dupont HT、Honoré S、Colson P、Chabrière E、La Scola B、Rolain J、Brouqui P、Raoult D。羟氯喹和阿奇霉素治疗 COVID-19:结果开放标签非随机临床试验。国际。 J.抗菌剂。代理商。 2020; 2020:105949。 [印刷前的电子版] 2020 年 3 月 20 日。doi:10.1016/j.ijantimicag.2020.105949。
噬菌体,也称为噬菌体,是在细菌和古细菌中复制的病毒。噬菌体最初被发现为抗菌剂,并且在称为“噬菌体疗法的过程中,它们都被用作细菌感染的治疗剂。”最近,已经研究了噬菌体在各个领域的功能性纳米材料,因为它们不仅可以作为治疗剂,而且可以作为生物传感器和组织再生材料的功能。噬菌体对人是无毒的,它们具有自组装的纳米结构和功能特性。此外,可以很容易地对遗传修饰进行噬菌体以显示特定的肽或通过噬菌体显示筛选功能性肽。在这里,我们证明了噬菌体纳米材料在组织工程,传感和探测的背景下的应用。