一种强大的方法来增强对疫苗抗原的体液反应是通过多价53在蛋白质纳米颗粒表面上显示许多抗原的副本11-19。54纳米核酸抗原表现出改善的淋巴运输18、20、21和增强B细胞受体55(BCR)交联22、23,诱导BCR 24的下游诱导信号扩增,并启用56个有效的价值依赖性BCR细胞激活BCR Affinition的BCR范围25。然而,蛋白质支架上抗原的57多聚化可能是双刃剑。When protein 58 scaffolds are used to display target antigens, they act as thymus-dependent (TD) repetitively 59 arrayed antigens themselves, eliciting priming of scaffold-specific B cells towards irrelevant 60 protein substrates that potentially compete in GCs against the desired, epitope-specific bnAb 61 precursor B cells 17, 26-30 .62
随着全息技术的快速发展,基于跨表面的全息传播方案表现出极大的电磁(EM)多功能性潜力。然而,传统的被动式额叶受到其缺乏可重构性的严重限制,从而阻碍了多功能全息应用的实现。Origa-mi是一种机械诱导空间变形的艺术形式,它是多功能设备的平台,并引起了光学,物理和材料科学的极大关注。Miura-Ori折叠范式的特征是其在折叠状态下的连续重构性,在全息成像的背景下仍未探索。在此,我们将Rosenfeld的原理与Miura-Ori表面上的L-和D-金属手性对映异构体一起定制,以量身定制孔径分布。利用Miura-Ori折叠状态的连续可调性,金属结构的手性反应在不同的折叠构型上有所不同,从而实现了不同的EMALOGRAPHIC成像功能。在平面状态下,可以实现全息加密。在特定的折叠条件下,并由特定频率的自旋圆形极化(CP)波驱动,可以在具有CP选择性的指定焦平面上重建多重全息图像。值得注意的是,制造的折纸跨表面表现出较大的负泊松比,促进了端口和部署,并为自旋选择系统,伪装和信息加密提供了新颖的途径。
Aryan Amit Kashikar 12 年级学生,印度马哈拉施特拉邦浦那 摘要:折纸是日本古老的折纸艺术。多年来,它一直被用来创造令人惊叹的艺术作品。但折纸还有更多令人惊讶的用途,如汽车安全气囊、支架,甚至太空探索。折纸不仅仅是一只纸鹤。工程师用它来解决有趣的问题。折纸教会人们如何将非常大的薄片折叠成非常小的空间。这正是太空工程师所需要的。将折纸用于太空应用的原因是使用闪光灯、遮星板折叠、镶嵌等方式将非常大的结构发射到太空中。因此,能够将这些结构折叠起来,使它们整齐地装进我们的火箭,然后在到达太空时展开。研究人员试图进行文献综述,并展示折纸如何用于航空航天工程和相关领域。创新的航空航天解决方案(例如可变形的飞机机翼和可展开的空间结构)都是通过折纸原理实现的。使用复杂的建模和模拟工具对于创建用于航空航天应用的复杂折纸结构至关重要。关键词:折纸建模、太空探索、航空航天工程、空间应用、镶嵌。
摘要。DNA 折纸是 DNA 纳米技术的支柱,人们已经投入了大量精力来了解自组装反应的各种因素如何影响目标折纸结构的最终产量。本研究分析了碱基序列如何通过在自组装过程中产生脱靶副反应来影响折纸产量。脱靶结合是一种未被充分探索的现象,可能会在折纸折叠途径中引入不必要的组装障碍和动力学陷阱。我们开发了一种多目标计算方法,该方法采用给定的折纸设计,并对不同的支架序列(及其互补的钉书钉)进行评分,以确定四种不同类型的脱靶结合事件的发生率。使用我们在 DNA 折纸上的方法,我们可以选择生物序列(如 lambda DNA 噬菌体)的“坏”区域,当用作折纸支架序列时,每种形状的脱靶副反应数量过多。我们利用高分辨率原子力显微镜 (AFM) 显示,尽管支架序列具有完全互补的订书钉组,但这些支架序列在体外大多无法折叠成目标三角形或矩形结构。相反,使用我们的方法,我们还可以选择生物序列的“良好”区域。这些序列缺乏脱靶反应,当用作折纸支架时,可以更成功地折叠成其目标结构,如 AFM 所表征。这些结果已在两个不同实验室的“盲”折叠实验中得到验证,其中实验者不知道哪些支架是好的或坏的折叠者。为了进一步研究组装行为,光镊实验揭示了不同的机械响应曲线,与支架特定的脱靶相互作用相关。虽然 GC 含量较高的变体显示出较高的平均展开力,但脱靶结合较低的变体表现出更均匀的力-延伸曲线。我们的分析证实,高脱靶结合会导致结构异质性增加,如 OT 实验展开轨迹的聚类行为所示。总体而言,我们的工作表明,如果脱靶反应足够普遍,碱基序列中隐含的脱靶反应会破坏折纸自组装过程,并且我们提供了一种软件工具来选择支架序列,以最大限度地减少任何 DNA 折纸设计的脱靶反应。
我们构建了一类称为折纸单体的单类,由琼斯单脚和由链折纸结构中的链链组织动机。DNA折纸的两种基本构建模块与琼斯的图形反映密切相关。是由DNA折纸结构的合理修饰和所研究的琼斯单型植物的关系的合理修饰,然后我们确定了一组折纸曲折的关系。这些关系扩大了琼斯单型的关系,并包括一组新的关系,称为上下文通勤。具有上下文换向,某些发电机仅在给定上下文中找到时通勤。我们证明折纸是有限的,并提出了其元素的正常形式表示。,我们在绿色的折纸类植物类别与琼斯单人的直接产物的绿色类别之间建立了反应。
这项研究探讨了将增强现实(AR)与机器学习(ML)融合在一起,以通过折纸折叠来增强动手技能的获取。我们使用Yolov8模型开发了一个AR系统,以提供每个折叠步骤的实时反馈和自动验证,并为用户提供逐步指导。引入了一种新型的训练数据集准备方法,从而提高了检测和评估折纸折叠阶段的准确性。在一项涉及16名参与者折叠多个折纸模型的参与者的形成性用户研究中,结果表明,尽管ML驱动的反馈增加了任务完成时间,但它还使参与者在整个折叠过程中都感到更加认识。但是,他们还报告说,反馈系统增加了认知负载,尽管提供了宝贵的指导,但仍减慢了进度。这些发现表明,尽管ML支持的AR系统可以增强用户体验,但需要进一步优化才能简化反馈过程并提高复杂的手动任务中的效率。
将胶体量子发射器确定性地整合到硅基光子器件中将推动量子光学和纳米光子学的重大进展。然而,将 10 纳米以下的粒子以纳米级精度精确定位到微米级光子结构上仍然是一项艰巨的挑战。在这里,我们引入了腔形调制折纸放置 (CSMOP),它利用 DNA 折纸的形状可编程性,选择性地将胶体纳米材料沉积在光刻定义的光刻胶腔内,这些光刻胶腔被图案化到任意光子器件上,具有高产量和方向控制。软硅化钝化可稳定沉积的折纸,同时保留其空间可编程的 DNA 杂交位点,从而实现等离子体金纳米棒 (AuNR) 和半导体量子棒 (QR) 的位点特异性附着。这分别提供了对光散射和发射偏振的控制,并在氮化硅波导、微环谐振器和靶心腔内确定性地集成了单个 QR。因此,CSMOP 为胶体纳米材料集成到光子电路中提供了一个通用平台,具有为量子信息科学和技术提供强大推动力的广阔潜力。
Technische Universiteit Eindhoven,Het Kranenveld 14,5612 Az Az Eindhoven,荷兰B实验室,生物人工系统和生物传感器,化学,生命科学和环境可持续发展系,帕尔马地区,Parco Area of Parma delle scien and parco scien and parmo carco sceen and parmo carco Photonics,化学系,Ku Leuven,Celestijnenlaan 200f,3001 Heverlee,比利时。 *通信:T.Patino.padial@tue.nl由于DNA折纸的独特空间可寻址性,针对配体(例如) 的适体或抗体)可以特异性地定位在纳米结构的表面上,这构成了研究细胞表面的配体 - 受体相互作用的重要工具。 虽然设计和配体掺入DNA折纸纳米结构是良好的,但细胞表面相互作用动力学的研究仍处于探索阶段,在该阶段中,对分子相互作用的深入基本理解仍然没有被倍增。 这项研究独特地捕获了使用单粒子跟踪(SPT)在原位的DNA折纸与细胞之间的实时相遇。 在这里,我们用特异性的表皮生长因子受体(EGFR)功能化DNA纳米棒(NRS),并将其用于靶向EGFR过表达的癌细胞。 SPT数据显示,配体涂层的NR选择性地与目标癌细胞中表达的受体结合,而非官能化的NR仅显示可忽略的细胞相互作用。Technische Universiteit Eindhoven,Het Kranenveld 14,5612 Az Az Eindhoven,荷兰B实验室,生物人工系统和生物传感器,化学,生命科学和环境可持续发展系,帕尔马地区,Parco Area of Parma delle scien and parco scien and parmo carco sceen and parmo carco Photonics,化学系,Ku Leuven,Celestijnenlaan 200f,3001 Heverlee,比利时。 *通信:T.Patino.padial@tue.nl由于DNA折纸的独特空间可寻址性,针对配体(例如) 的适体或抗体)可以特异性地定位在纳米结构的表面上,这构成了研究细胞表面的配体 - 受体相互作用的重要工具。 虽然设计和配体掺入DNA折纸纳米结构是良好的,但细胞表面相互作用动力学的研究仍处于探索阶段,在该阶段中,对分子相互作用的深入基本理解仍然没有被倍增。 这项研究独特地捕获了使用单粒子跟踪(SPT)在原位的DNA折纸与细胞之间的实时相遇。 在这里,我们用特异性的表皮生长因子受体(EGFR)功能化DNA纳米棒(NRS),并将其用于靶向EGFR过表达的癌细胞。 SPT数据显示,配体涂层的NR选择性地与目标癌细胞中表达的受体结合,而非官能化的NR仅显示可忽略的细胞相互作用。Technische Universiteit Eindhoven,Het Kranenveld 14,5612 Az Az Eindhoven,荷兰B实验室,生物人工系统和生物传感器,化学,生命科学和环境可持续发展系,帕尔马地区,Parco Area of Parma delle scien and parco scien and parmo carco sceen and parmo carco Photonics,化学系,Ku Leuven,Celestijnenlaan 200f,3001 Heverlee,比利时。*通信:T.Patino.padial@tue.nl由于DNA折纸的独特空间可寻址性,针对配体(例如的适体或抗体)可以特异性地定位在纳米结构的表面上,这构成了研究细胞表面的配体 - 受体相互作用的重要工具。虽然设计和配体掺入DNA折纸纳米结构是良好的,但细胞表面相互作用动力学的研究仍处于探索阶段,在该阶段中,对分子相互作用的深入基本理解仍然没有被倍增。这项研究独特地捕获了使用单粒子跟踪(SPT)在原位的DNA折纸与细胞之间的实时相遇。在这里,我们用特异性的表皮生长因子受体(EGFR)功能化DNA纳米棒(NRS),并将其用于靶向EGFR过表达的癌细胞。SPT数据显示,配体涂层的NR选择性地与目标癌细胞中表达的受体结合,而非官能化的NR仅显示可忽略的细胞相互作用。此外,我们探索了配体密度对DNA折纸的影响,该折纸表明,适体装饰的NRS表现出非线性结合特性,而这种在抗体装饰的NR中的作用较低。这项研究提供了对细胞界面上对DNA折纸行为的基本理解的新机械见解,并具有前所未有的时空分辨率,这有助于生物医学应用的配体靶向DNA折纸的合理设计。
作者:A Mills · 2023 年 · 被引用 6 次 — 此类纳米装置的用途是测量蛋白质-DNA 结合力(35、36)或在细胞和非细胞系统中进行机械感应(41、42)。