储能系统是可再生能源系统管理能源供应和需求的重要组成部分之一。本文研究了一种新型混凝土热能存储系统与太阳能驱动的有机朗肯循环的集成。复合抛物面集热器 (CPC) 用于吸收太阳能。然后将太阳能转移到热能存储 (TES) 和有机朗肯循环 (ORC) 进行储热和发电。为了评估所提出系统的性能,对其进行了数值建模,并进行了参数研究,以找到 TES 的最佳参数,从而最大化 ORC 的工作时间。结果表明,TES 管道长度的增加会导致 TES 充电时间和热容量增加到 82 小时和 660 kW,太阳能电池板表面为 1000 m 2。此外,通过使用长度为 2000 m、直径为 0.4 m 的优化 TES 混凝土部分,ORC 的工作时间每天延长 3.10 小时。此外,太阳能驱动的ORC系统中使用TES导致系统发电量减少1.3%,发热量增加0.49%。
摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
摘要:全球能源需求不断增加,危及未来的能源供需平衡。为了给子孙后代提供可持续的解决方案,并遵守到 2050 年实现碳中和的国际目标,可再生能源已成为国际讨论的焦点,积极促进能源转型和气候政策。为了实现国际目标,安哥拉提出了一项长期战略,通过改善电力部门促进国家领土的公平和可持续发展。在所有可再生资源中,太阳能被认为是最有前途的解决方案,因为它在安哥拉具有第二大可再生能源潜力。然而,与太阳能相关的主要问题是太阳能系统的效率以及电能和热能的储存。作为解决方案的一部分,聚光太阳能发电 (CSP) 可以为安哥拉能源部门的转型做出更大的贡献,因为它可以通过集中太阳能显著提高能源强度。此外,这项技术的广泛适用性可以促进仍在为能源公平而奋斗的农村地区的发展。通过考虑 CSP 的潜力,本文介绍了安哥拉能源部门的现状,并重点介绍了该国的太阳能潜力。介绍了 CSP 技术的优势,重点介绍了抛物面碟式系统,并介绍了提高热效率的贡献和创新解决方案。
食物、衣服和住所是生活的三大基本必需品。食物可以被视为人类成长和生存的重要组成部分。因此,烹饪的来源是我们日常生活中最重要的事情之一。烹饪能源有多种,如煤油、液化石油气、木柴和可再生能源等,其中一种就是太阳能烹饪,它是一种可再生能源。太阳能烹饪的限制在于烹饪只能在白天进行。如果为太阳能灶提供热能存储系统,则可以在傍晚或夜间烹饪食物。在过去的几十年里,烹饪行业使用了各种各样的太阳能灶,包括箱式太阳能灶、平板式太阳能灶、抛物面碟式太阳能灶、真空管式太阳能灶和舍弗勒碟式太阳能灶,这些灶具有显热、潜热和联合储热技术。因此,本文总结了对可用的热能储存材料(显热、潜热和组合储热材料)的研究和分析,以便在白天储存热量并将其用于白天以外的目的,用于太阳能烹饪应用。本研究还比较了用于烹饪的显热、潜热和组合储热系统。
Ariel(大气遥感红外系外行星大型巡天)是欧空局“宇宙视野”计划框架内采用的 M4 任务。其目的是通过凌日光谱法对已知系外行星的大气层进行巡天。发射计划于 2029 年进行。Ariel 科学有效载荷包括一台离轴、未被遮挡的卡塞格林望远镜,该望远镜为波段在 0.5 至 7.8 µm 之间的一组光度计和光谱仪提供信号,并在低温(55 K)下运行。望远镜组件采用创新的全铝设计,可耐受热变化,避免影响光学性能;它由一个主抛物面镜组成,其椭圆形孔径为 1.1 m 的长轴,随后是安装在重新聚焦系统上的双曲面次镜、抛物面重新准直三镜和一个平面折叠镜,将输出光束引导至与光学平台平行。基于 3 个柔性铰链的创新安装系统支撑着光学平台一侧的主镜。光学平台另一侧的仪器舱内装有 Ariel 红外光谱仪 (AIRS) 和精细制导系统/近红外光谱仪 (FGS/NIRSpec)。望远镜组装处于初步设计审查的 B2 阶段,开始制造结构模型;一些组件,即主镜、其安装系统和重新聚焦机制,正在进行进一步的开发活动,以提高其准备程度。本文介绍了 ARIEL 望远镜组装的设计和开发。
本研究提出并彻底检验了一种基于氢存储的太阳能和风能有效混合的新方法,以提高电网稳定性并降低峰值负荷。抛物面槽式集热器、氯化钒热化学循环、氢存储罐、碱性燃料电池、热能存储和吸收式制冷机构成了建议的智能系统。此外,拟议的系统还包括一个风力涡轮机,用于为电解器单元供电并最大限度地缩小太阳能系统的规模。基于规则的控制技术建立了与能源网络的智能双向连接,以补偿全年的能源费用。瞬态系统模拟 (TRNSYS) 工具和工程方程求解器程序用于对瑞典住宅建筑进行全面的技术经济环境评估。使用基于灰狼算法与人工神经网络的 MATLAB 进行四目标优化,以确定指标之间的最佳平衡。根据结果,在最佳条件下,一次能源节省、二氧化碳减排率、总成本和购买能源分别为 80.6 %、219 %、14.8 $/h 和 24.9 MWh。从散点分布可以得出结论,燃料电池电压和集电极长度应保持在最低范围,而电极面积是无效参数。建议的可再生驱动智能系统可以满足建筑物全年 70% 的需求,并将多余的产量出售给当地能源网络,使其成为一种可行的替代方案。太阳能在冬季储存氢气的效率远低于风能,这证明了结合可再生能源来满足需求的好处。通过降低 61,758 公斤的二氧化碳排放量,预计建议的智能可再生系统可能会节省 7719 美元的环境成本,相当于重新造林 6.9 公顷。
主要领域:机械与航空航天工程 摘要:近年来,UAS(无人机系统)通过集成先进的摄像机、传感器和硬件系统获得了改进的功能;然而,UAS 仍然缺乏检测和记录音频信号的有效手段。这部分是由于硬件的物理规模和硬件集成到 UAS 中的复杂性。当前的研究是将高增益抛物面麦克风集成到 UAV(无人机)中用于声学勘测的更大规模研究工作的一部分。由于嵌入式抛物面天线与自由流掠流之间的气动相互作用,需要使用挡风玻璃将天线整平到飞机上。当前的研究开发了一种表征方法,通过该方法可以优化各种挡风玻璃的设计和配置。该方法测量候选挡风玻璃的法向入射声传输损耗 (STL) 以及其在一系列流速下安装时产生的流体动力噪声的增加。在俄克拉荷马州立大学的低速风洞上设计并安装了测试装置。测试设备使用附在风洞测试段地板上的“静音箱”。风洞测试段和静音箱之间的直通窗口允许在两个环境之间安装候选挡风玻璃。安装在风洞测试段和静音箱内的麦克风记录各种流速下的声谱,范围在每秒 36 至 81 英尺之间。制造了一个张紧的 Kevlar® 挡风玻璃验证样本来验证系统性能。STL 频谱是通过比较 Kevlar® 膜两侧麦克风的信号来测量的。将流离场景的法向入射 STL 结果与其他研究中对相同材料在张紧状态下的结果进行比较。在几种流速下还测量了流入传输损耗频谱数据以及膜引起的流动噪声的增加。该系统已被证明可以产生与流入和流离测试配置的参考数据一致的 STL 数据,并且能够检测到验证样本挡风玻璃产生的流动诱导噪声的增加。
图 4-6。A 示波器显示.................................................................................... 4-5 图 4-7。B 示波器显示.................................................................................... 4-5 图 4-8。RHI 示波器显示 ............................................................................. 4-6 图 4-9。PPI 示波器显示....................................................................................... 4-6 图 4-10。连续波雷达 ............................................................................. 4-7 图 4-11。基本 CW 多普勒雷达............................................................................. 4-8 图 4-12。CW 多普勒雷达显示 ............................................................................. 4-8 图 4-13。CW 和脉冲多普勒雷达比较.............................................................. 4-9 图 4-14。基本脉冲多普勒雷达图.............................................................. 4-10 图 4-15。单脉冲雷达............................................................................... 4-11 图 4-16。单脉冲 Magic T............................................................................. 4-11 图 4-17。Magic T 输出信号.................................................................... 4-12 图 4-18。单脉冲雷达轨迹.................................................................... 4-12 图 4-19。单脉冲雷达轨迹逻辑............................................................. 4-13 图 5-1。基本雷达脉冲 ................................................................................................ 5-1 图 5-2。雷达英里................................................................................................... 5-2 图 5-3。第二次回波.................................................................................... 5-3 图 5-4。雷达脉冲................................................................................................ 5-4 图 5-5。T1 处的雷达脉冲.................................................................................... 5-5 图 5-6。T2 处的雷达脉冲.................................................................................... 5-5 图 5-7。T3 处的雷达脉冲.................................................................................... 5-6 图 5-8。雷达距离分辨率................................................................................... 5-6 图 5-9。雷达波束宽度 ................................................................................................ 5-7 图 5-10。方位角确定...................................................................................... 5-8 图 5-11。天线扫描............................................................................................. 5-8 图 5-12。水平波束宽度比较............................................................................. 5-9 图 5-13。水平波束宽度和方位角分辨率............................................................. 5-10 图 5-14。方位角分辨率............................................................................. 5-10 图 5-15。垂直波束宽度和仰角分辨率............................................................. 5-11 图 5-16。仰角分辨率............................................................................. 5-12 图 5-17。雷达分辨率单元................................................................................ 5-13 图 5-18。雷达分辨率单元尺寸.................................................................... 5-13 图 5-19。脉冲调制....................................................................................... 5-14 图 5-20。脉冲调制波形的谐波....................................................................... 5-15 图 5-21。谐波含量....................................................................................... 5-15 图 5-22。谱线频率....................................................................................... 5-16 图 5-23。选择性杂波消除................................................................................. 5-16 图 5-24。PRF 和谱线..................................................................................... 5-17 图 5-25。脉冲多普勒滤波器................................................................................ 5-18 图 6-1。抛物面天线 ........................................................................................ 6-1 图 6-2。抛物面圆柱天线 ................................................................................ 6-2 图 6-3。测高抛物面天线 ............................................................................. 6-3 图 6-4。多馈电抛物面天线 ............................................................................. 6-3 图 6-5。卡塞格伦天线 ............................................................................................. 6-4 图 6-6。平板卡塞格伦天线 ............................................................................. 6-4 图 6-7。相控阵天线................................................................................ 6-5
自Fattorini和Russel的开创性工作以来,抛物面部分分化方程的无效可控性已被广泛研究[17]。从Fursikov和Imanuvilov [19]以及Lebeau和Robbiano [23]的作品中,人们通常会承认,在抛物线副部分差异方程的背景下,在控制域上没有限制,并且对控制域没有限制,在内部或边界控制上没有几何限制。最近,对特定示例的研究强调了无效可控性或控制域上的几何条件的积极最小时间的存在。实际上,在[13]中的70 s中已经提供了这样的示例,但是由于特定的点控制,当时还没有理解此结果的全部范围。关于这种最小时间的最新结果已在也被视为特定的上下文中证明,即对耦合抛物线方程的控制[2,4,5,14]或对退化抛物线方程的控制[7,8,9,6]。尽管这三个设置表现出相同的定性行为,但到目前为止,它们之间尚未建立任何精确的联系。我们在本文中的目的是给出一个抽象的框架,其中包含那些不同的框架来研究最小的零控制时间属性。更确切地说,我们将将这一最小时间与(1.5)定义的时间t ∗相关联。我们将强调,这种最小的时间可以具有不同的起源。可以通过(广义)本征函数的某些定位相对于观察算子B ∗(如[13,5,5,14,7,8,9,6])。在定理1.2中处理此方面。,但也可以通过[2,4]中的基础操作员的特征值的凝结来创建最小的时间。在定理1.3中处理了这一方面。在这两个抽象设置中,最小的无效控制时间将由t ∗给出。我们还将提出一个更通用的设置(包括之前的两个设置),以应对最小时间来自特征函数的定位和光谱的凝结的情况。在这种情况下(请参见定理1.4),我们将证明存在这种最小时间与t ∗有关,但是此最小时间的确切值将是一个开放的问题。最后,仍然有一些例子不适合我们研究的不同设置。有关其中一些示例(请参阅第二节4)我们仍将能够证明最小的空控制时间由t ∗给出。对特定示例的这种分析将需要先验最小时间的值,因此目前,在[7,8,6]中研究的退化抛物线方程将不在本文的范围内。
举办了 15 次短期培训访问,并进行了 42 次流动。开发了总结联盟提供的 RI 和服务的最新情况的数据库,确定了可能缺少的基础设施/服务,以实现最新 CST 实施计划的目标,并与利益相关者进行了讨论。最终确定了协调融资机会的概念说明,并举办了研讨会。EU-SOLARIS 成为 ERIC。与其他 CST 相关的欧盟项目和国际倡议开展合作。准备了实施 TA 活动的文件。发起了 5 次电话会议;完成了 4 次访问活动。4 次关于 TA 的网络研讨会。制定了熔盐 (MS) 对结构材料的动态腐蚀协议,研究了材料作为潜热或显热能储存介质的可行性的方法,并制定了原型测试指南。确定了 MS 回路的关键组件,并审查了当前程序。举办了关于 CSP MS 工厂组件特性的传播研讨会。制定了报告 DWT 系统行为的协议和指南,对适当的测试程序进行了通用定义,以评估 DWT 中要实施的新组件和材料的性能,改进了模拟软件并验证了其中使用的相关性。实施了新的实验装置。完成了开发用于热力学、动力学和循环稳定性测试的标准化材料测试的工作。对太阳能燃料 (SF) 生产工艺领域的 200 多种出版物进行了文献综述,并用于制定 SF 生产反应堆的品质因数。改进了用于评估 CSP 接收器热机械性能的测试台并进行了首次太阳能测试。组装了相机原型,基于一种改进 CSP 太阳能接收器温度测量的新方法。进行了 RRT 发射率测量。使用红外摄像机进行了参数识别以确定线性集热器管的温度。改进了加速老化装置。制定了脏污镜测量指南,分析了脏污散射行为,并提供了基于模型的分析传递函数。在测试台和太阳能集热器上生成了更多 REPA 负载数据,包括传感器数据分析。开发了新的抛物面槽 (PT) 接收器热损失测量程序。验证了混合预测模型,开发了预测模型。研究了使用天空成像仪数据对 PT 性能参数确定准确性的影响。发表了菲涅尔 RI 对 DNI 变化的稳健性。LFR