摘要:本讲座探讨了豁免法的最新发展,特别强调了豁免法在国家和国际法院中不断演变的解释。特别关注的是国家法院在遵守国家豁免原则的同时处理侵犯人权行为所面临的挑战。讨论将简明而全面地概述国际法中的豁免权,强调关键的司法判决以及主权豁免权与追求正义和问责之间的复杂平衡。通过研究最近的判例法,讲座将分析国家豁免权与基本人权义务之间日益加剧的紧张关系。它将强调旨在调和这些相互竞争的利益的新兴趋势和司法方法。本次会议旨在为不断变化的法律格局及其对国家、个人和国际机构的实际影响提供宝贵的见解。关于演讲者:Aziz Tuffi Saliba 是米纳斯吉拉斯联邦大学 (UFMG) 的国际法教授,自 2018 年起担任国际事务副校长。他拥有博士学位。萨利巴教授拥有 UFMG 法学学士学位,曾在圣母大学进行过研究,并以富布赖特学者身份在亚利桑那大学获得国际贸易法硕士学位。他在加拿大拉瓦尔大学完成了博士后研究。在他的职业生涯中,他曾在剑桥大学、海德堡马克斯普朗克研究所和卢布尔雅那大学等知名机构担任过访问学者。萨利巴教授的学术生涯非常出色,曾在巴西各联邦大学的教授职位公开竞争中获得第一名。他曾担任 UFMG 法学院副院长(2014-2018 年)。他目前的研究兴趣包括国内法院的国际法、外交和领事豁免权以及人工智能的法律含义和应用,尤其是大型语言模型 (LLM)。如有任何与活动相关的问题(包括入场券),请联系 Svetlana Smirnova 女士:svetlana.smirnova@hse.ru。
摘要目的:确定接受造血干细胞(HSCT)的βthalassyapar(BTM)患者的结果,作为捐助者与匹配的同胞供体(MSD),父母完全匹配的父母(MSD)。研究设计:观察性研究。研究的地点和持续时间:2013年1月至2023年,巴基斯坦拉瓦尔品第临床血液学和骨髓移植中心。方法论:A组由BTM患者组成,这些患者接受了与兄弟姐妹完全匹配的HSCT,B组由BTM患者组成,这些BTM患者与HSCT一起接受了与父母完全匹配的捐助者。研究数据包括供应者和捐助者的年龄和性别,注入干细胞的来源和剂量,以及急性和慢性移植与宿主疾病(GVHD)的阶段和等级。所有患者均接受了骨髓性调理方案(MAC)。收集数据以评估患者人口统计数据,对HSCT的反应,缓解率,无疾病生存率(DFS),复发和GVHD无生存(GRFS)以及总生存期(OS)。结果:54例患者的平均年龄为5.90±3.29岁。平均TNC和CD34剂量分别为4.99 + 1.13和5.42 + 3.70。两组中嗜中性粒细胞植入的平均时间为14.88 + 4.51天,血小板的植入为23.0 + 5.35天。最常见的死亡原因是中性粒细胞减少性败血症,其次是AGVHD。七名患者被拒绝。尽管在这项研究中的OS中,移植物的排斥反应较高,但在移植物的抑制与供体关系之间没有显着关联。OS在两组中都是平等的。无疾病的生存期在MSD中比母体组高(57.7%)。结论:随着BTM患者的捐助者的同种异性骨髓移植,结果与匹配的同胞供体的捐助者相当。此发现在巴基斯坦等地区特别相关,那里的捐助者注册和高分辨率HLA打字可能受到限制。
第 01 章 CRISPR 技术在开发家禽各种疾病疫苗和免疫中的应用 Tazeen Ahsan、Aqsa Zahoor、Saba Majeed、Hamad ur Rehman、Moazam Ali Khan、Muhammad Ali、Syeda Fakhra Waheed、Abid Hussain 和 Muhammad Asim 微生物研究所、兽医学学院、兽医和动物科学大学、拉合尔主校区 流行病学和公共卫生系、兽医和动物科学大学、拉合尔主校区 动物生产和技术学院、动物育种和遗传学系、兽医和动物科学大学、拉维校区家禽研究所、拉瓦尔品第 畜牧业和奶牛发展部 莱亚兽医和动物科学学院。比姆贝尔阿扎德查谟和克什米尔大学兽医学系、兽医学和动物科学学院 *通讯作者:Tazeen Ahsan (tazeenahsan98@gmail.com) 摘要 CRISPR 是一种现代基因组编辑方法,为疫苗和免疫的开发以及其在生物学不同领域的其他几种用途铺平了道路。CRISPR-Cas9 系统最初是在原核生物中发现的。CRISPR-Cas 9 系统的组成部分包括 Cas 操纵子、富含 AT 的梯子和由独特间隔序列分隔的重复序列。它已用于遗传学研究、生物医学建模和诊断等领域以及其他医学研究。基因组编辑技术也已用于开发针对家禽各种疾病的疫苗,本章也详细讨论了这种用途。CRISPR 技术与传统的活疫苗和减毒疫苗生产相比具有许多优势。我们可以修改疫苗生产策略,以通过考虑家禽疫苗接种和免疫技术的克服和缺点来免疫家禽。CRISPR 技术可以成为未来针对病毒和细菌性疾病对鸟类进行疫苗接种和免疫的一种方式。关键词 CRISPR 技术、CRISPR-Cas 9 系统、基因组编辑技术、生物医学建模、诊断学、疫苗生产
摘要目的:在多发性硬化症的大鼠模型中,确定辅酶Q10&L-肉碱对少突胶质细胞坏死和髓鞘的协同作用。研究设计:基于实验室的实验研究。研究的地点和持续时间:该研究是在2022年3月至2022年5月与NIH伊斯兰堡合作的12周期间,于2022年3月至2022年在巴基斯坦伊斯兰国际医学院拉瓦尔品第进行了研究。方法:总共五十只雄性Sprague Dawley大鼠分为五个随机组,每个组都有一个独特的治疗计划。虽然第1组接受了标准饮食,但剩下的四组被多发性硬化症诱导,并在12周的时间内给予0.2%的Cuprizone(CPZ)。四周后,将第3组的辅酶Q10/泛氨酸酮(COQ10)的150 mg/kg/天提供,第4组接受了100 mg/kg/kg/day l- carnitine(l car),而第5组则通过两者的组合进行治疗,同时仍接受CPZ。完成为期12周的方案后,牺牲了大鼠,并提取了大脑。H&E染色,以评估少突胶质细胞坏死的任何变化,而Luxol Fast Blue(LFB)染色用于可视化髓鞘中的改变。结果:在控制少突胶质细胞坏死和控制髓磷脂的液泡方面,COQ10和L型车的组合明显好于单个药物,这是ANOVA和F-TEST的证明。因此,强烈建议同时针对患有多发性硬化症患者的两种药物开出两种药物,因为它可能为患者提供更大的优势。结论:这项研究明确地证明,与单独使用相比,将COQ10和L型车一起同时对促进髓鞘性和防止少突胶质细胞坏死具有更大的作用。
全球血液和骨髓移植网络(WBMT)是由主要造血细胞移植(HCT)社会(HCT)社会和捐助者注册机构正式创建的在世界卫生组织(WHO)的兴趣和强烈支持下,这些领导人共同构想了共同努力改善HCT,蜂窝疗法和相关领域的全球应用中的标准化以及扩大数据共享范围的努力。这个“社会联合会”始于17个国际组织,目前有21个,所有组织都对HCT(附录A)产生了极大的兴趣。WBMT根据瑞士定律,由Liebefeld的总部合并为一个非营利组织,用于教育,科学和慈善目的。资金支持已从相关行业和教育活动中收入征求资金。在WBMT网站(wbmt.org)上可用的先前进度报告中,可用的WBMT活动最早的描述。它们包含有关WBMT如何发展,其结构和宪章,其显着成就以及其未来目标和目标的信息。本报告重点介绍2023日历年期间WBMT的成就。在巴基斯坦拉瓦尔品第的成功第8届研讨会和研讨会之后,包括平行护理计划,新成立的WBMT护士常设委员会组织了为期两天的尼日利亚骨骨髓移植护士的混合式工作坊,由尼日利亚的Partners Vanderbilt University与Parts Vanderbilt University,vanderbilt University,vanderbilt University,vanderbilt University,vanderbilt University of Lagle Cell First和Niger Foundation Niger Foundation of Niger Foundation。按照他们的伟大努力,该计划可以看作是未来WBMT护士研讨会的非常强大的模板。此外,在患有慢性病毒疾病的患者中发表了多篇论文,并接受了有关同种异体HSCT的重要网络研讨会,并在镰状细胞病中进行了HSCT。期待2024年,正在提出许多新的想法,已提交了新的摘要,并组织了第9 WBMT研讨会和研讨会的组织。WBMT成员社会和合作伙伴的一流支持使一切成为可能。
02. 艾哈迈达巴德法庭 古吉拉特邦 03. 阿拉哈巴德法庭 (i) 北方邦,但不包括勒克瑙法庭管辖下的序列号 4 中提到的地区 (ii) 北阿坎德邦 04. 班加罗尔法庭 卡纳塔克邦。05. 昌迪加尔法庭 (i) 哈里亚纳邦 (ii) 喜马偕尔邦 (iii) 旁遮普邦 (iv) 昌迪加尔联邦属地。06. 金奈法庭 (i) 泰米尔纳德邦 (ii) 本地治里联邦属地。07. 克塔克法庭 奥里萨邦。08. 埃尔讷古勒姆法庭 (i) 喀拉拉邦 (ii) 拉克沙群岛联邦属地。 09. 古瓦哈蒂法官 (i) 阿萨姆邦 (ii) 曼尼普尔邦 (iii) 梅加拉亚邦 (iv) 那加兰邦 (v) 特里普拉邦 (vi) 阿鲁纳恰尔邦 (vii) 米佐拉姆邦。 10. 海得拉巴长凳 (i) 安得拉邦。 (ii) 特伦加纳州 11. 贾巴尔普尔长凳 (i) 中央邦。 (ii) 恰蒂斯加尔邦。 12. 拉贾斯坦邦的斋浦尔长凳区:阿杰梅尔、阿尔瓦尔、巴兰、巴拉特普尔、本迪、达乌萨、多尔普尔、斋浦尔、贾拉瓦尔、Jhunjhunu、科塔、萨瓦尔马多普尔、锡卡尔、通克和卡劳利。 13. 查谟长凳 (i) 查谟和克什米尔联邦直辖区的 Doda、Jammu、Kathua、Kishtwar、Poonch、Rajouri、Ramban、Resai、Samba、Udampur 等地区。
1 BC Cancer,病理学系,温哥华,BC V5Z 4E6,加拿大;dionescu@bccancer.bc.ca 2 临床实验室遗传学部,实验室医学项目,大学健康网络,多伦多,ON M5G 2C4,加拿大;tracy.stockley@uhn.ca 3 多伦多大学实验室医学和病理生物学系,多伦多,ON M5S 1A8,加拿大 4 曼尼托巴省癌症护理研究所,温尼伯,MB R3E 0V9,加拿大; sbanerji@cancercare.mb.ca 5 曼尼托巴大学拉迪健康科学学院内科系,加拿大曼尼托巴省温尼伯市 R3A 1R9 6 魁北克大学拉瓦尔心脏病学和肺病学研究所解剖病理学和细胞学服务中心,加拿大魁北克省魁北克市 G1V 4V5;christian.couture.med@ssss.gouv.qc.ca 7 医学和牙科学院实验室医学和病理学系,加拿大艾伯塔省埃德蒙顿市 T6G 2B7;cheryl.mather@albertaprecisionlabs.ca 8 伊丽莎白二世健康科学中心病理学系,加拿大新斯科舍省哈利法克斯市 B3H 1V8; zxu3@dal.ca 9 加拿大新斯科舍省哈利法克斯达尔豪斯大学病理学系 B3H 4R2 10 加拿大蒙特利尔大学中心医院医学系血液肿瘤学服务系,1051, Rue Sanguinet,蒙特利尔,魁北克省 H2X 3E4,加拿大;normand_blais@hotmail.com 11 加拿大安大略省布兰普顿市多伦多大学威廉奥斯勒健康系统 L6R 3J7;parneet.cheema@williamoslerhs.ca 12 加拿大艾伯塔大学十字癌研究所肿瘤学系肿瘤内科分部,艾伯塔省埃德蒙顿 T6G 1Z2,加拿大;quincy.chu@albertahealthservices.ca 13 加拿大不列颠哥伦比亚省温哥华癌症中心,加拿大不列颠哥伦比亚省温哥华 V5Z 4E6; bmelosky@bccancer.bc.ca 14 多伦多大学玛格丽特公主癌症中心,多伦多,ON M5G 2C1,加拿大 * 通讯地址:Natasha.Leighl@uhn.ca
1 北京林业大学生物科学与技术学院, 国家林木育种与生态修复工程研究中心, 林木分子设计育种北京市高精尖创新中心, 林木育种国家工程实验室, 林木园林植物遗传育种教育部重点实验室, 北京 100083 2 山东省农业科学院作物种质资源研究所, 作物遗传改良与生理生态重点实验室, 济南 250100 3 广东省农业科学院水稻研究所, 农业农村部南方优质水稻遗传育种重点实验室 (省部共建) , 广东省水稻育种新技术重点实验室, 广州 510640 4 宁夏大学农学院, 银川 750021 5 云南省水稻遗传改良重点实验室中国科学院昆明植物研究所东亚植物多样性与生物地理学重点实验室极小种群植物综合保护重点实验室,云南昆明 650201 6 山东农业大学林学院,山东泰安 271000 7 于默奥大学生态与环境科学系于默奥植物科学中心,瑞典于默奥 SE-901 87 8 不列颠哥伦比亚大学林业与保护科学系,加拿大不列颠哥伦比亚省温哥华,V6T 1Z4 9 图能森林遗传研究所,德国格罗斯汉斯多夫 22927 10 根特大学植物生物技术和生物信息学系,比利时根特 9052 11 VIB 植物系统生物学中心,比利时根特 9052 12 微生物生态学和基因组学中心,比勒陀利亚大学生物化学、遗传学和微生物学系,比勒陀利亚 0028,南非 13 南京农业大学园艺学院,高等交叉研究院,南京 210095,中国 14 于默奥植物科学中心,植物生理学系,于默奥大学,SE-901 87 于默奥,瑞典 15 森林与森林科学系,Faculté de林业,地理与地理,拉瓦尔大学,魁北克,QC G1V 0A6,加拿大
1 北京林业大学生物科学与技术学院, 国家林木育种与生态修复工程研究中心, 林木分子设计育种北京市高精尖创新中心, 林木育种国家工程实验室, 林木园林植物遗传育种教育部重点实验室, 北京 100083 2 山东省农业科学院作物种质资源研究所, 作物遗传改良与生理生态重点实验室, 济南 250100 3 广东省农业科学院水稻研究所, 农业农村部南方优质水稻遗传育种重点实验室 (省部共建) , 广东省水稻育种新技术重点实验室, 广州 510640 4 宁夏大学农学院, 银川 750021 5 云南省水稻遗传改良重点实验室中国科学院昆明植物研究所东亚植物多样性与生物地理学重点实验室极小种群植物综合保护重点实验室,云南昆明 650201 6 山东农业大学林学院,山东泰安 271000 7 于默奥大学生态与环境科学系于默奥植物科学中心,瑞典于默奥 SE-901 87 8 不列颠哥伦比亚大学林业与保护科学系,加拿大不列颠哥伦比亚省温哥华,V6T 1Z4 9 图能森林遗传研究所,德国格罗斯汉斯多夫 22927 10 根特大学植物生物技术和生物信息学系,比利时根特 9052 11 VIB 植物系统生物学中心,比利时根特 9052 12 微生物生态学和基因组学中心,比勒陀利亚大学生物化学、遗传学和微生物学系,比勒陀利亚 0028,南非 13 南京农业大学园艺学院,高等交叉研究院,南京 210095,中国 14 于默奥植物科学中心,植物生理学系,于默奥大学,SE-901 87 于默奥,瑞典 15 森林与森林科学系,Faculté de林业,地理与地理,拉瓦尔大学,魁北克,QC G1V 0A6,加拿大
1 爱丁堡大学心血管科学中心,校长大楼,小法国新月,爱丁堡,EH16 4SB,英国;2 巴茨心脏中心,巴茨健康 NHS 信托,W Smithfield,EC1A 7BE,伦敦,英国;3 伦敦大学学院心血管科学研究所,62 Huntley St,WC1E 6DD,伦敦,英国;4 莱斯特大学心血管科学系,University Rd,莱斯特 LE1 7RH,英国;5 NIHR 莱斯特生物医学研究中心,Glenfield 医院,Groby Road,莱斯特,LE3 9QP,英国;6 心血管创新中心,圣保罗和温哥华综合医院,1081 Burrard St Room 166,温哥华,不列颠哥伦比亚省 V6Z 1Y6,加拿大; 7 心脏、胸腔和血管科学与公共卫生系,Via Giustiniani, 2 - 35128,帕多瓦,意大利; 8 阿尔斯特心血管中心,OLV 诊所,Moorselbaan 164, 9300 阿尔斯特,比利时; 9 那不勒斯大学高级生物医学科学系,费德里科二世,80125 那不勒斯,意大利; 10 布鲁塞尔 Ziekenhuis 大学心脏病学系,Laarbeeklaan 101, 1090 Jette, 比利时; 11 心脏病科,Hôpital La Timone,264 Rue Saint-Pierre,13005 马赛,法国; 12 Allina Health 明尼阿波利斯心脏研究所,雅培西北医院,800 E 28th St,明尼阿波利斯,明尼苏达州 55407,美国; 13 雷恩大学心脏病学和 CIC,2 Rue Henri Le Guilloux,35033 雷恩,法国; 14 GIGA 心血管科学,列日大学医院心脏病科,CHU Sart Tilman,比利时列日; 15 Gruppo Villa Maria Care and Research, Corso Giuseppe Garibaldi, 11, 48022 Lugo RA, 意大利; 16 魁北克心脏病和肺病学研究所/魁北克心肺研究所,2725 Ch Ste-Foy,魁北克,QC G1V 4G5,加拿大; 17 拉瓦尔大学医学系,Ferdinand Vandry Pavillon,1050 Av.加拿大魁北克省魁北克市 G1V 0A6 魁北克医学中心;美国华盛顿大学医学院医学系心脏病学第 18 分部,4333 Brooklyn Ave NE Box 359458,西雅图,华盛顿州 98195-9458,美国