最近爆发的 SARS-CoV-2 (2019-nCoV) 病毒凸显了快速有效疫苗开发的必要性。刺激导致保护的适当免疫反应高度依赖于通过 HLA 复合物向循环 T 细胞呈递表位。SARS-CoV-2 是一种大型 RNA 病毒,体外测试所有重叠肽以反卷积免疫反应是不可行的。因此,通常使用 HLA 结合预测工具来缩小要测试的肽的数量。我们测试了 19 种表位-HLA 结合预测工具,并使用体外肽 MHC 稳定性测定法,我们评估了 777 种预测为 11 种 MHC 同种异型良好结合剂的肽。在这项对潜在 SARS-CoV-2 表位的研究中,我们发现当前的预测工具在评估结合稳定性时的性能各不相同,并且它们高度依赖于所讨论的 MHC 同种异型。因此,设计一种仅包含少数表位靶标的 COVID-19 疫苗是一项非常具有挑战性的任务。在这里,我们展示了 174 个具有高预测结合分数的 SARS-CoV-2 表位,这些表位经验证可与 11 种 HLA 同种型稳定结合。我们的研究结果可能有助于设计一种有效的 COVID-19 疫苗。
5 乘积空间和 2 个量子比特 37 5.1 纠缠. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.4 受控非门 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 45 5.10 利用纠缠态进行量子密钥分发 . ...
摘要:现代计算架构正在向计算可逆性发挥根本作用的系统发展。该领域的一项关键创新是开发一种新型算术逻辑单元 (ALU),该单元保持完整的双向操作能力。这种先进的 ALU 架构采用复杂的多路复用器配置和精确的控制信号来实现可逆计算。作为中央处理单元中的关键组件,这种可逆 ALU 设计代表着向可编程量子计算系统迈出了重要一步。该架构利用基于多路复用器的操作选择,在保持信息保存的同时实现灵活的计算路径。通过实现可编程可逆逻辑门,该设计超越了传统的与/或门限制。所提出的 4 位 ALU 配置通过利用反向数据参考实现了更高的效率,显著降低了逻辑电路的功耗。通过使用包括 Verilog HDL、ModelSim Altera 和 Quartus Prime 在内的行业标准工具进行全面仿真验证了该实现,证实了该设计适用于下一代计算应用。这种创新方法代表了开发节能、量子兼容处理单元的关键进步。
摘要:人们长期以来一直在寻找设想中的量子互联网节点的物理平台。我们在此提出了这样一个平台,以及一个概念简单、实验简单的量子信息处理方案,该方案在多个晶相量子点系统中实现。我们引入了新的定位量子比特,描述了一种构建全光量子门通用集的方法,并模拟了它们在包括退相干源在内的实际结构中的性能。我们的结果表明,定位量子比特对主要退相干机制具有鲁棒性,实际的单量子比特门保真度超过 99.9%。我们的方案为构建具有内置光子接口的多量子比特固态量子寄存器铺平了道路,这是即将到来的量子互联网的关键构建块。关键词:光学活性纳米线量子点、晶相量子结构、定位量子比特、光量子控制、绝热量曼技术
在过去的十年中,对热位点表征的需求显着增加,尤其是用于设计地热能解决方案和地面电源电缆网络的设计。基于环境,地质,地球物理和岩土技术的地理位置,通常将位点的热表征结果纳入地面模型中。本文比较了土壤热位点表征的原位测试方法。比较认为方法适用性,部署方法,最大测试深度,测试持续时间和结果的不确定性。在三类原位测试之间进行了区分:(1)使用主动热产生的原位测试,(2)使用被动热量产生的原位测试和(3)没有特定热数据习得的原位测试。关键字:热位点表征;导热率;体积热容量;原位测试。
摘要。隐私是当务之急。因此,需要防止机密数据秘密被未经授权的访问入侵,这是通过加密算法来完成的,即高级加密标准算法已成为广泛接受的对称块加密算法。This paper therefore focuses on developing a new AES-512 bits symmetric encryption algorithm through modification of the conventional AES-128 algorithm to be used purposefully in the classroom for document transfer.The development comes with increasing the plaintext bits of the conventional AES-128 algorithm to 512 bits plaintext which undergoes five operational transformations: STATE, SKGF, SRL, SCL GF(2 9)的Galois领域中的钥匙大小。然后给出一个数值示例来解释算法的使用,最后,我们提供了该算法和其他现有对称加密模型的比较研究,例如AES-128和DES算法。
Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 位 图( 3 ) ▲注意: 1 、 TM1723 最多可以读 2 个字节,不允许多读。 2 、读数据字节只能按顺序从 BYTE1-BYTE2 读取,不可跨字节读。例如:硬件上的 KEY2 与 KS3 对应按键按下时, 此时想要读到此按键数据,必须需要读到第 2 个字节的第 6BIT 位,才可读出数据;当 KEY1 与 KS3 , KEY2 与 KS3 , KEY3 与 KS3 三 个按键同时按下时,此时 BYTE2 所读数据的 B5 , B6 , B7 位均为 1 。 3 、组合键只能是同一个 KS ,不同的 KEY 引脚才能做组合键;同一个 KEY 与不同的 KS 引脚不可以做成组合键使用。 7.3.按键扫描
参 数 名 称 符 号 条 件 最小 最大 单 位 电源电压 V CC — -0.5 +7 V 输入钳位电流 I IK V I <-0.5V 或 V I >V CC +0.5V — ± 20 mA 输出钳位电流 I OK V O <-0.5V 或 V O >V CC +0.5V — ± 20 mA 输出电流 I O -0.5V
¾ 采用 CMOS 工艺制造,低功耗 ¾ 很宽的工作电压范围( V DD =2.4V ~ 15V ) ¾ 最大到 12 位三态地址管脚或 6 位数据输出管脚 ¾ SD827 2B 解码可选择锁存型(后缀- L )和瞬态型(后缀- M )数据输出 ¾ 封装形式为 DIP18 、 SOP18 、 SOP20 或 CHIP (裸芯片)