高质量的高分辨率(HR)磁共振(MR)图像提供了更详细的信息,可用于可靠的诊断和定量图像分析。深度综合神经网络(CNN)显示出低分辨率(LR)MR图像的MR图像超分辨率(SR)的有希望的Abil。LR MR图像通常具有一些vi-Sual特征:重复模式,相对简单的结构和信息较少的背景。大多数以前的基于CNN的SR方法同样处理空间像素(包括背景)。他们也无法感知输入的整个空间,这对于高质量的MR IMPIMSR至关重要。为了解决这些问题,我们提出了挤压和激发推理注意网络(SERAN),以获得MR Image SR。我们建议从输入的全球空间信息中挤出注意力,并获得全球描述符。这样的全球描述符增强了网络专注于MR图像中更具信息区域和结构的能力。我们在这些全球描述符之间进一步建立了关系,并提出了引起关注的原始关系。全球描述符将以学习的关注进一步确定。为了充分利用汇总信息,我们通过学习的自适应注意向量自适应地重新校准了特征响应。这些注意向量选择一个全局描述符的子集,以补充每个空间位置以进行准确的细节和纹理重新分解。我们通过残留的缩放提出挤压和激发注意力,这不仅可以稳定训练,而且还使其对其他基本网络的灵感变得非常灵活。广泛的例证显示了我们提出的Seran的有效性,该塞伦在定量和视觉上清楚地超过了基准标记的最新方法。
量子系统与其环境的相互作用导致量子相干的丧失。通常通过Ancilla,建立良好的储层工程方法调整量子系统与其环境的耦合,可以通过将有效的耗散性动态逐渐发展为量子量子状态或量子状态[1-6],从而克服了有效的耗散动力学来克服脱碳范式。尤其是在电路量子电差异的范围内[7],已经成功利用了储层工程,以自主保护在谐波振荡器的限制希尔伯特空间中编码的量子信息,即玻孔代码,而无需基于测量的反馈。这是通过有效的奇偶校验的工程来实现的,它保留了耗散的演化,该耗散演化将微波谐振器的状态驱动到由相反状态的均匀和奇数相干叠加跨越具有相反位移的歧义的歧管,也称为Schrödinger猫态[8-11]。原则上,这些耗散动态可用于准备猫代码的逻辑状态[9]。尽管如此,这不是必需的,因为使用最佳控制脉冲序列[10],可以使用分散耦合量子轴对微波谐振器场进行通用控制,或者正如最近已证明的那样,已证明,连续变量(CV)通用门集的优化序列[12,13]。因此,为了稳定CAT代码的唯一目的,储层工程是为了唯一的目的。
VDW砧座由两个单一晶体MOS 2单层在蓝宝石上生长。砧座对于生产2D金属至关重要,原因有两个。首先,单层MOS 2 /SAPPHIRE的原子平坦,无骨的表面确保大规模均匀的2D金属厚度。第二,蓝宝石和单层MOS 2(> 300 GPA)的高年轻人的模量使它们能够承受极端的压力,从而使两个砧之间形成2D金属到
焊接过程产生的图像噪声(例如弧光,飞溅和烟雾)给基于激光视觉传感器的焊接机器人带来了巨大的挑战,可以定位焊接接缝并准确地进行自动焊接。当前,基于深度学习的方法超过了灵活性和鲁棒性的传统方法。但是,它们的重大计算成本导致与自动焊接的实时要求不匹配。在本文中,我们对卷积神经网络(CNN)和变压器的有效混合体系结构(称为动态挤压网络(DSNET))进行实时焊接接缝分段。更准确地说,开发了一个轻巧的分割框架,以充分利用变压器结构的优势,而无需显着增加计算开销。在这方面,旨在提高其功能多样性的高效编码器已被设计并导致了编码性能的大幅改进。此外,我们提出了一个插件轻巧的注意模块,该模块通过利用焊接接缝数据的统计信息并引入线性先验来产生更有效的注意力权重。使用NVIDIA GTX 1050TI对焊缝图像进行广泛的实验表明,与基线方法Transunet相比,我们的方法将参数的数量减少了54倍,将计算复杂性降低了34倍,并将推理速度提高33倍。dsnet可实现较高的准确性(78.01%IOU,87.64%骰子)和速度性能(100 fps),其模型复杂性和计算负担较低。该代码可在https://github.com/hackerschen/dsnet上找到。
沿海地区在这项研究中表现出更强的非洲混合物,而北部也门也门地区的北部地区表明与阿拉伯和黎凡特有更紧密的遗传关系。在也门漫长而持续的内战中,这项研究发现,沿海和内陆分裂的历史基因组起源不同,这与当前冲突的划分线相处。
水电开发,污染和水的提取使诸如Lumbardhi iDeçanit河等栖息地严重退化,在某些地区导致昆虫群落和令人震惊的鱼类缺失。侧流类似于发现Lumbardhi的T. Lumbardhi是稀有物种的关键避难所,但仍然容易受到环境压力的影响。
各位同仁,挤压加工是目前金属及合金塑性成形的常用方法。近年来,除了改进直接/间接挤压加工方法外,新的技术也不断被提出。金属及合金挤压的成形机理,包括材料最终性能的控制与表征以及挤压加工过程中被激活的成形机理的分析,是本期特刊的研究范围。基础研究与技术创新推动挤压技术的融合,发现现有的不足,尝试突破,不断将新的研究课题和发展路径推向前沿尤为重要。本期特刊欢迎关注新型挤压技术及其对材料最终力学性能和成形性的影响的文章,包括钢材和有色合金(镁/铝/钛合金等)。
我们考虑了由非等级三级激光器产生的两种模式光,在光力学腔中,与两种模式挤压真空储存库中的参数振荡器一起产生。使用稳态状态下的腔模式变量的期望值分析了泵模式,光学耦合强度和挤压真空储层对腔模式挤压和纠缠特性的影响。结果表明,所考虑的系统产生的两模式光显示出正交挤压和纠缠。在空腔中存在参数振荡器,并挤压真空储层可以增强腔模式灯的挤压,纠缠和平均光子数的程度。光力学腔对腔模式的平均光子数和纠缠没有影响,但增加了正交挤压的程度。
视网膜疾病会严重危害人们的视力,直接影响生活质量。视网膜是人眼的重要组成部分,由视觉细胞组成。它负责处理视觉信息。黄斑是中央视觉所必需的,位于视网膜层内。视网膜损伤,特别是黄斑区域的损伤,会导致视力严重丧失 [ 1 ]。因此,及早发现视网膜异常对于及时治疗和减少视力丧失至关重要 [ 2 ]。最常见的视网膜疾病包括糖尿病性黄斑水肿 (DME) 和年龄相关性黄斑变性 (AMD)。AMD 有两种类型:湿性 AMD(脉络膜新生血管,或 CNV)和干性 AMD(视网膜黄斑硬化症),后者是 65 岁以上人群失明的主要原因 [ 3 ]。约 25% 的糖尿病患者患有糖尿病性黄斑水肿 (DME),这是由于糖尿病导致视网膜积液所致。如果不及时治疗,这些疾病可能会永久损害视力。因此,开发自动诊断系统对于有效的治疗计划至关重要,因为此类系统可以减轻临床医生的负担并提高早期检测率 [ 4 ]。
软材料通过紧密模仿生物体的复杂运动和变形行为,在小型机器人应用中发挥着至关重要的作用。然而,传统的制造方法在制造高度集成的小型软设备方面面临挑战。在这项研究中,利用微流体技术精确控制反应扩散 (RD) 过程,以生成多功能和区室化的钙交联海藻酸盐微纤维。在 RD 条件下,生产出复杂的海藻酸盐纤维,用于磁性软连续机器人应用,具有可定制的功能,例如几何形状(紧凑或中空)、交联程度和磁性纳米粒子的精确定位(在核心内部、围绕纤维或一侧)。这种精细控制允许调整微纤维的刚度和磁响应性。此外,纤维内可化学裂解的区域能够在旋转磁场下分解成更小的机器人单元或卷起结构。这些发现证明了微流体在处理高度集成的小型设备方面的多功能性。