相对评估了四种地球物理方法的检测地下异常/空隙的能力,即电阻率层析成像(ERT),表面波的多通道分析(MASW),地面穿透性雷达(GPR)(GPR)和全波形倒置(FWI)。我们发现: ERT非常适合检测和定位地下异常,但可能无法准确大小或表征异常/空白的材料组成; b。在大多数现实的现场条件下,MASW是不合适的。 c。基于计算模拟,FWI似乎合适,并且可能满足现场条件的需求,但是该功能未测试。和d。由于深度限制,GPR在异常检测中的能力非常有限,它缺乏一致性,并且很大程度上取决于操作员的经验。即使检测成功,使用GPR的异常大小和表征也是不可行的。给定大多数基础架构项目常见的现场现实,我们建议继续使用ERT检测地下异常/空隙。我们还建议将来的研究努力集中在a上。联合发生和基于多物理的方法; b。软件开发。
无人驾驶飞行器 (UAV) 以其速度快、功能多样而闻名,可用于收集航空图像和遥感数据,用于土地利用调查和精准农业。随着无人机的可用性和可访问性的增长,它们现在作为船舶监控和搜索救援 (SAR) 行动等海洋应用的技术支持至关重要。无人机上可以配备高分辨率摄像头和图形处理单元 (GPU),以有效和高效地帮助定位感兴趣的物体,适用于紧急救援行动,或者在我们的案例中,用于精准水产养殖应用。现代计算机视觉算法使我们能够在动态环境中检测感兴趣的物体;然而,这些算法依赖于从无人机收集的大型训练数据集,而目前在海洋环境中收集这些数据集非常耗时且费力。为此,我们提出了一个新的基准套件 SeaD- roneSim,它可用于创建具有真实感的照片级航空图像数据集,并为任何给定对象的分割掩模提供地面实况。仅利用 SeaDroneSim 生成的合成数据,我们在真实航拍图像上获得了 71 个平均精度 (mAP),用于检测我们感兴趣的对象,即本可行性研究中流行的开源遥控水下机器人 (BlueROV)。这款新模拟套装的结果可作为检测 BlueROV 的基准,可用于
反潜战是海军最重要的任务之一。第一阶段和不可或缺的阶段是探测潜艇,第二阶段是确定潜艇的位置,第三阶段是对其进行分类或识别。潜艇的探测、定位和分类主要采用目前被认为是最有效的水声方法。水声潜艇探测方法通常分为两类:主动和被动。主动方法使用潜艇反射的声信号回声,而被动方法使用潜艇发出的声信号。主动方法的优势在于可以探测不发出任何声信号(例如潜艇不动时)或发出非常弱的信号(例如所谓的安静潜艇)的潜艇。主要缺点是需要发出探测信号,以揭示敌方回声测距系统的存在。被动方法使用潜艇发出的声信号,这是一个明显的缺点;然而,它们不会揭示系统的存在。考虑到两种方法的互补优势,它们通常结合用于潜艇探测。
Studying the changing middle atmosphere at unprecedented resolutions - CAIROS – Constellation of Atmospheric hIgh Resolution Occultation Spectrometers Damien Weidmann, Sophie Godin-Beekmann, William Bell, Bernd Funke, Michaela Hegglin, Brian Kerridge, Miyazaki Kazuyuki, William Randel, Keith Shine, Christopher Sioris, Michiel Van Weele, Vincent-Henri Peuch,Peter Hoor,
简介。- 光学信息可以按照自由度的极化程度进行编码,通过光学旋转和空间自由度进行参数,即横向光学模式的相位和强度曲线[1,2]。矢量梁结合了极化和空间信息。由具有不同复杂幅度的正交极化组成,它们表现出空间变化的极化曲线,提供了广泛的应用[3-5]。原子偶极转移通过选择规则对极化敏感,以及通过兔频率的复杂光幅度敏感,使原子活跃的光学元件可以通过矢量束的内在特性进行修改和修改。这种双向相互作用允许创建复杂的光学现象,在过去的几十年中,这些现象已经进行了广泛的研究[6]。矢量光原子相互作用可以产生空间各向异性[7 - 9]和一致性[10-12],并在原子中量身定制非线性效应[13-16]。矢量梁也已存储[17,18],并在原子系统中转换[19,20]。
图 5:(ad) 先进的扫描探针,可在空间、能量和时间上实现终极分辨率。(a) 尖端功能化(例如 CO)可提高横向分辨率。(b) STM 发光可研究原子尺度上的光与物质相互作用。(c) 带有自旋极化尖端的 ESR-STM,可探测具有 μeV 能量分辨率的自旋流形。(d) 泵浦探测 THz-STM,可探测激发光谱的时间动态。(ei) 点缺陷(蓝色球体)横向位置控制的可能概念。(e,f) 合成自组织,例如沿域边界 (e) 或使用明确定义的纳米片 (f)。(g) 使用电子(左)或离子束(右)进行原子操控。(h) 通过扫描探针尖端进行原子操控,移动表面原子/分子并将其固定/植入宿主基质中。 (i)尖端诱导的化学处理的二维材料的解吸,暴露悬空键(红色)作为掺杂剂的锚点。
1 密歇根州立大学国家超导回旋加速器实验室,美国密歇根州东兰辛 48824 2 密歇根州立大学物理系,美国密歇根州东兰辛 48824 3 日本理化学研究所仁科中心,广泽 2-1,埼玉县和光市 351-0198 4 京都大学物理系,京都北白川市 606-8502,日本5 高丽大学物理系,首尔 02841,大韩民国 6 达姆施塔特工业大学核物理学研究所,D-64289 达姆施塔特,德国 7 GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 达姆施塔特,德国 8 物理、天文学和应用计算机科学学院,雅盖隆大学,波兰克拉科夫 9 克罗地亚萨格勒布 Rudjer Boskovic 研究所实验物理部 10 日本东京西池袋 3-34-1 立教大学物理系 171-8501 11 韩国大田 34047 基础科学研究所稀有同位素科学项目 12 日本仙台 980-8578 东北大学物理系 13 日本东京工业大学物理系 152-8551 14 日本核物理研究所 PAN,ul。 Radzikowskiego 152, 31-342 克拉科夫,波兰 15 德克萨斯 A&M 大学回旋加速器研究所,德克萨斯州学院站 77843,美国 16 尼凯夫国家亚原子物理研究所,阿姆斯特丹,荷兰 17 清华大学物理系,北京 100084,中国 18 德克萨斯 A&M 大学化学系,德克萨斯州学院站 77843,美国 19 IFIN-HH,Reactorului 30,077125 Mˇagurele-Bucharest,罗马尼亚(日期:2021 年 3 月 17 日)
具体而言,本公告涉及可能适用于 UAS 检测和缓解能力的两类联邦法律:(1) 美国司法部执行的美国刑法典的各项规定;(2) 美国联邦航空局、国土安全部和联邦通信委员会管理的联邦法律法规。本公告不涉及 UAS 检测和缓解能力可能涉及的州和地方法律。它也不涵盖因使用 UAS 检测和缓解技术而产生的潜在民事责任(例如,因缓解 UAS 威胁而对人身或财产造成物理损害的潜在责任,或根据 18 USC § 2520 非法拦截有线、口头或电子通信的民事责任和追偿)。本公告仅供参考。强烈建议实体在测试、采购、安装或使用 UAS 检测和/或缓解系统之前,寻求熟悉联邦和州刑事、监视和通信法律的律师的建议。实体应对每个 UAS 检测和/或缓解系统进行自己的法律和技术分析,而不应仅仅依赖供应商对系统合法性或功能的陈述。作为该分析的一部分,实体应仔细评估并考虑使用 UAS 检测和缓解功能是否会影响公众的隐私、公民权利和公民自由。这一点尤为重要,因为如下所述,潜在的法律禁令不是基于系统的广泛分类(例如主动与被动、检测与缓解),而是基于每个系统的功能以及系统运行和使用的具体方式。透彻了解适用法律和系统功能将确保有效、负责任和合法地使用旨在通过检测和/或缓解 UAS 威胁来保护公共安全的重要技术。
J C(T)= J C(0)×(1 - (T/T C)2)5/2(1 +(T/T/T C)2)-1/2,用4 mA/cm 2的J C(0)j C(0),这可以归因于