通过导体驱动的电子电流可以通过著名的库仑阻力效应诱导另一个导体中的电流。在移动的流体和导体之间的接口上已经报道了类似的现象,但是它们的解释仍然难以捉摸。在这里,我们利用了非平衡的Keldysh框架,开发了一种相互交织的流体和电子流的量子机械理论。我们预测,全球中性液体可以在其流动的实心壁中产生电子电流。这种流体动力学库仑阻力均来自液体电荷波动与固体电荷载体之间的库仑相互作用,以及由实心声子介导的液体电子相互作用。我们根据固体的电子和语音特性以及液体的介电响应明确地得出了库仑阻力电流,这一结果与液态涂纸界面上的最新实验一致。此外,我们表明当前一代抵消了从液体到固体的动量转移,从而通过量子反馈机制降低了流体动力摩擦系数。我们的结果为控制量子水平控制纳米级液体流量提供了路线图,并提出了设计具有低流体动力摩擦的材料的策略。
气体填充,激光驱动的“倒入电晕”融合靶标吸引了作为研究动力学物理学的低温中子源和平台的兴趣。在调查的填充压力下,从壳体中弹出的颗粒可以在碰撞之前深入渗透到气体中,从而导致在气体 - 壳界面上显着混合。在这里,我们使用动力学离子,流体 - 电子混合粒子中的模拟来探索该混合物的性质。模拟显示出弱碰撞静电冲击的特性,因此,强烈的电场将壳离子加速到罕见的气体中,并反映上游气体离子。这种互穿的过程是由碰撞过程介导的:在较高的初始气压下,较少的壳颗粒进入混合区域并到达热点。通过中子产量缩放与气压可检测到这种效果。中子屈服缩放的预测与在欧米茄激光器设施中记录的实验数据表现出极好的一致性,这表明一维动力学机制足以捕获混合过程。
鉴于激烈的全球竞争,欧洲的决策者承认电子行业面临的挑战。推出大规模投资和支持措施以推动创新,例如 ECSEL、PENTA、IPCEI,是加强这一关键经济部门的重要一步。欧洲需要为整个欧洲电子行业制定长期愿景和战略,以保持其竞争优势并促进价值创造。在这方面的一项重大贡献是修订欧盟电子战略。同时,工业和社会的数字化是一个大趋势,迫切需要电子作为硬件构建模块,与软件、通信、计算、机器人和光子学等其他领域进行补充和互动。