摘要:随着物质稀缺和环境问题的增长,重复使用和减少废物的关注是根据它们减少碳排放和促进零净建筑物的潜力而引起的。这项研究开发了一种创新的方法,该方法将多模式传感技术与机器学习结合在一起,以实现对现场建筑材料的无接触式评估,以重新使用潜力。通过整合热成像,红色,绿色和蓝色(RGB)相机以及深度传感器,系统可以分析材料条件并揭示现有建筑物内的隐藏几何形状。这种方法通过分析现有材料(包括其成分,历史和组件)来增强材料的理解。一项关于干墙解构的案例研究表明,这些技术可以有效地指导解构过程,并有可能大大降低材料成本和碳排放。这些发现突出了可行的场景,用于干墙再利用,并通过自动反馈和可视化切割线和紧固件位置来提高现有解构技术的见解。本研究表明,非接触式评估和自动解构方法在技术上是可行的,经济上有利的,并且在环境上是有益的。作为朝着查看和对现有建筑材料进行分类的新方法迈出的第一步,本研究为未来的研究奠定了基础,促进了可持续的建筑实践,以优化材料再利用并减少负面的环境影响。
申请人/学习者:需要此表格的信息,因为您在汉密尔顿健康科学(HHS)中拥有即将到来的学习经验。请让您的医疗保健提供者填写以下所有详细信息!亲爱的医疗保健提供者,安大略省医院协会和安大略省医学协会(OHA/OMA)要求医院工作的每个人都满足以下要求。感谢您为此个人完成此免疫表格。
第 3 章 服务规范 (第 9 条 至 第 15 条) 第 4 章 监督检查和法律责任 (第 16 条 至 第 21 条) 第 5 章 附 则 (第 22 条 至 第 24 条)
实验室站点网络的工作仍在继续,以确保协调并消除将结果输入 OLIS 的任何障碍,以便尽快与公共卫生部门共享结果。当患者在线查看实验室结果时,他们将能够在安全的在线表格中输入关键数据,包括有关可能接触过病毒的已知接触者的信息。这些信息以及患者的实验室结果将直接提供给 Salesforce,供相应的公共卫生部门使用,为病例管理员提供“快速启动”。这将大大减少重复和手动数据输入,使调查人员能够尽早开始接触病例和确定接触者的重要工作。
印刷电子是一个充满活力的研究和技术领域,可获得按需功能元件。[1–3] 近年来,已报道了具有半导体、[4] 光电、[5] 储能[6] 和磁性 [7] 特性的印刷电子。特别是印刷磁阻传感器已证明其作为非接触式电磁开关 [8,9] 和非接触式交互式皮肤平台的相关性。[10] 这些磁敏感复合材料是通过将铁磁磁阻 (MR) 颗粒或薄片分散在各种凝胶状或热塑性粘合剂溶液中而制成的(表 1)。[9–17] 虽然这些贡献在过去十年中显著推动了该领域的发展,但由于组成颗粒或薄片的复杂性和高生产成本,这些技术的大规模应用仍未实现。表现出高达 37% 的巨磁电阻效应 (GMR) 的薄片由多层异质结构组成,需要逐层沉积亚纳米厚的薄膜。[9–13] 需要精确调整层的厚度以实现可测量的磁阻变化。这导致表现出 GMR 的粉末的生产成本增加。为了解决 GMR 粉末的可扩展性问题,采用了表现出各向异性磁阻 (AMR) 的商品可用铁磁材料颗粒。[14] 然而,测得的 AMR 效应降低到 0.34%。此外,这些 MR 技术通常在 500 mT 以下的磁场下具有线性响应,并且在此之外几乎不敏感。缺乏一种具有强磁阻信号并在宽磁场范围内工作的可打印商品级材料。使用打印技术瞄准更广泛的磁场可以实现新型低成本技术解决方案,从非接触式开关应用到机械的工业监控。采用传统的印刷方法实现大规模生产和高磁场下的线性响应需要新材料的开发。
目前控制电动神经假体的方法是基于测量仍然存在的肌肉的肌电图 (EMG) 信号,或使用脑机或神经机接口概念来评估神经元模式,并从脑阵列、束内神经电极或组合脑电图/眼电图 (EEG/EOG) 设备中获取假体的命令 [1]。这些神经假体概念很有趣并且发展很快,尽管其中一些对用户来说是侵入性的或令人不适的,并且可能并不总是反映用户对智能但尽可能简单的假体的愿望,这些假体可以独立地连接、使用和控制[2]。一些令人鼓舞的非侵入性且低成本的方法已经开发出来,但它们中的大多数仍然需要扩展支持,例如当必须连接非侵入性 EEG/EOG 系统的电极时。在我们的新概念(图 1)中,患者唯一的界面是配备前置摄像头的光学透视眼镜 (OSTG) 的增强现实 (AR) 技术。手假肢可以是任何有源电动手假肢或机械臂。假手上附有标记,可以是(红外)发光二极管 (LED) 或胶点。如果
2 危险性概述 Hazards identification 紧急情况概述 : 可能在火灾爆炸 , 释放刺激性气体。 Emergency Overview: May explode in a fire, which could release irritant gas.侵入途径 Primary routes of entry: 皮肤接触:正常情况下无已知的重大影响或危害。接触已损坏电池可能引起灼伤。 Skin contact: No known significant effects or critical hazards under normal use.Contact with damaged batteries may cause burns.眼睛接触:正常情况下无已知的重大影响或危害。接触已损坏电池可能引起灼伤。 Eye contact: No known significant effects or critical hazards under normal use.Contact with damaged batteries may cause burns.吸入:电池泄漏释放蒸汽或气体,吸入可能导致刺激呼吸道及眼睛。 Inhalation: Inhalation of vapors or fumes released due to heat or a large number of leaking batteries maycause respiratory and eye irritation.摄入:产品内物质摄入人体可能会引起口腔、喉咙和肠道烧伤和伤害。 Ingestion: Ingestion of product contents may cause mouth, throat and intestinal burns and damage.
这些材料的厚度[13,14]、孔隙率[15]、多晶性[16]和生长形貌都会影响关键的设计参数,如质量密度(ρ)和热导率(κ)。例如,质量密度是爆炸材料爆轰性能的主要参数,因为它与由此产生的传播速度成正比。[17,18]另一方面,热导率可以为药物成分的无定形稳定性提供关键见解,这最终决定了它们的生物利用度。[3,19,20]对于薄膜热障,质量密度和热导率都起着重要作用,因为它们通常是被动的并受到瞬态热载荷。 [8] 考虑到工程表面的状况、[12] 微观缺陷、[21] 通往非晶态的新途径[20] 和新型沉积技术[22] 预计将共同作用以控制有机薄膜的微观结构,需要对热物理性质进行局部测量,以指导其合成和生长。然而,对有机薄膜而言,质量密度的局部测量是一个巨大的挑战。例如,掠入射 X 射线反射、光谱椭圆偏振术和横截面扫描电子显微镜要么需要超光滑表面[23]、有机物透明的波长[24],要么需要可能损坏熔点低的样品的离子暴露。[25,26] 另一方面,重量法测量质量和体积会得出整个样本的平均密度,而没有关于微观结构的信息。显然,需要一种能够非破坏性地探测有机薄膜局部质量密度变化的测量技术。频域热反射 (FDTR) 是一种成熟的泵探测测量技术,可用于测定块体和薄膜材料的热性质,探测尺寸与激光光斑尺寸相当(通常约为 10 μ m)。[27–29] 使用 FDTR,可以定期提取材料的热导率和体积热容量 (ρcp)。然后可以使用测得的体积热容量和体积比热容 (cp) 的假设来确定质量密度。为了测量有机薄膜的质量密度,
健康监测和早期疾病检测在当代医疗保健中具有巨大的重要性,从而提供了从反应性转向主动和预防方法的范式。在其新生阶段检测健康问题可以及时干预,通常在症状表现出现之前。但是,传统疾病检测方法通常涉及侵入性程序,或要求个人束缚在监视设备上。非接触式传感技术,例如红外传感器,雷达和计算机视觉,可以无侵入性的重要健康数据收集。例如,配备这些传感器的可穿戴设备可以实时监视心率,呼吸速度和体温,从而提供连续的数据流,而不会破坏用户的日常活动。同时,由人工智能(AI)和机器学习(ML)算法推动的智能处理在理解无接触式传感设备产生的大量数据方面起着关键作用。将非接触式感应与智能处理技术相结合可以极大地使未来的医疗保健受益。鉴于这种潜力,该特殊部分提供了一个涵盖全面算法,框架,技术以及非接触式感应和智能处理以进行健康监测和早期疾病检测的应用。
- 由于业务收支计划等用于判断提案中各项条件及投标价格是否合适,因此必须进行准确的计算,以确认其一致性。 - 请注意,如果业务收支计划等内容与提议内容和投标价格存在很大差异,您的投标可能会无效。 - 须依照文件4:服务费计算及支付方式的内容准备业务收支计划等。 - 计算的财政年度必须与国家财政年度相对应。 - 必须记录实施该项目所需的所有资金和费用。 - 编制事业收支计划等时,除非另有指示,否则应不含消费税。 - 根据相关法规、法律和规定,通过适当的会计和税务程序编制。 - 如果计算依据等的计算过程比较复杂,请将计算过程准备在单独的表格中并附加(提交包含计算公式和其他表格的链接的数据)。