参考文献................................................................................................................387 附录.................................................................................................................401 附录 A.虚拟实验室中包含的实验室结构和设备.......................................................................................401 附录 B.试点研究培训任务.................................................................................403 附录 C. 试点研究虚拟实验室任务工作表.......................................................406 附录 D. 试点研究实验室手动任务工作表.......................................................410 附录 E. 试点研究测试....................................................................................................413 附录 F. 试点研究问卷....................................................................................422 附录 G. 试点研究信息声明和同意书.....................................................................431 附录 H. 调查 1 用户控制命令摘要.....................................................................437 附录 I.调查 1 任务工作表.....................................................................................439 附录 J.调查 1 测试.....................................................................................441 附录 K. 调查 1 信息声明和同意书表格....................450 附录 L. 调查 2 用户控制命令摘要和练习.......................................................................................................................457 附录 M. 调查 2 用户控制任务工作表.....................................................................................460 附录 N. 调查 2 动态视图和静态视图任务工作表.......................................................................463 附录 O.调查 2 测试.........................................................................................................466 附录 P. 调查 2 实验室任务观察笔记....................................................................................473 附录 Q.调查 2 问卷.............................................................................................476 附录 R. 调查 2 信息声明和同意书....................................................................................479 附录 S. CD-ROM 内容和安装说明.....................................................................................483 附录 T. VRML 原型.....................................................................................................484
宇航服设计。迄今为止,宇航服贴合度与操作性能之间的关系尚未量化。这项工作研究了宇航服手套贴合度对灵巧任务和模拟月球着陆器手动控制任务(具有心理工作量成分)的表现的影响。通过这些任务,评估了静态手套贴合度增加与灵巧任务和认知任务表现下降相关的假设。参与者(n = 9)穿着类似于猎户座乘员生存系统的原型宇航服手套,在手套箱真空室(4.3 psid)中完成任务。受试者在尺寸方案中的规定贴合度是使用他们的人体测量学确定的。受试者在加压和不加压状态下戴着比规定贴合度小一号的手套、规定贴合度尺寸和比规定贴合度大一号的手套执行任务。为了评估一般灵活性,受试者完成了钉板任务,这需要在板上的位置之间移动和旋转钉子。灵活性也通过功能性工具任务进行测量,其中受试者将舱外活动 (EVA) 系绳钩连接到按照 NASA 规范设计的固定装置上并断开连接。对于这两项灵活性任务,记录了完成时间。Draper 实时性能指标工作站月球登陆模拟器用于评估飞行性能和心理工作量(通过次要任务响应时间测量)。没有一致的迹象
音乐扩展到仅仅是娱乐性,具有增强众多能力的潜力,正如Schellenberg阐明的那样[8]。在这些功能中,音乐与语言技能之间的关联是显着的。大量个人坚持音乐可以有效地帮助语言获取的观念。作为Gerry等人。认为,音乐会培养神经系统的演变,因此经常帮助婴儿学习语言。另外,有人提出音乐允许儿童处于最早的发育阶段,可以理解其周围环境,而不是语言理解。鉴于两者都是表达方式,创造力可能会增强其获取和应用语言的能力。此外,Janus等人进行的研究。[7]建议,接受了音乐训练并成功掌握第二语言的个人在非语言执行控制任务中经常表现出卓越的表现。这导致了音乐和语言可能具有某些固有特征的推论。一些从业人员甚至采用音乐作为教学语言的教学策略,因为歌曲可能会增强记忆合并。这种语言学习的增强可能会进一步扩展到音乐引起的其他认知效果。尽管有足够的研究致力于探索音乐与认知能力之间的相互作用,但直接检查音乐和语言之间的相互关系仍然相对较少。因此,本文献综述打算仔细检查在认知能力,语言作品和神经发展的背景下研究个人与语言和音乐相遇的研究。
扩散模型已成为一种有前途的数据驱动规划方法,并已展示出令人印象深刻的机器人控制、强化学习和视频规划性能。给定一个有效的规划器,需要考虑的一个重要问题是重新规划——何时应由于动作执行错误和外部环境变化而重新生成给定的计划。直接执行计划而不进行重新规划是有问题的,因为来自单个动作的错误会迅速累积,并且环境是部分可观察和随机的。同时,在每个时间步重新规划会产生大量的计算成本,并且可能会阻止任务成功执行,因为不同的生成计划会阻止任何特定目标的一致进展。在本文中,我们探讨了如何使用扩散模型有效地进行重新规划。我们提出了一种原则性方法来确定何时重新规划,该方法基于扩散模型对现有生成计划的估计可能性。我们进一步提出了一种重新规划现有轨迹的方法,以确保新计划遵循与原始轨迹相同的目标状态,这可以有效地引导先前生成的计划。我们说明了我们提出的附加功能组合如何显著提高扩散规划器的性能,使其在 Maze2D 上的性能比过去的扩散规划方法提高了 38%,并进一步实现了随机和长视界机器人控制任务的处理。视频可在匿名网站上找到:https://vis-www.cs.umass. edu/replandiffuser/ 。
高水平的特质焦虑与注意力控制受损、注意力控制任务期间大脑活动变化以及网络静息态功能连接 (RSFC) 改变有关。具体而言,背外侧前额叶皮质到前扣带皮层 (DLPFC – ACC) 的功能连接被认为对于有效和高效的注意力控制至关重要,但在高特质焦虑个体中会降低。当前的研究检验了基于连接的实时功能性磁成像神经反馈 (rt-fMRI-nf) 在增强特质焦虑个体的 DLPFC – ACC 功能连接方面的潜力。我们特别测试了 DLPFC - ACC 连接的变化是否与焦虑水平降低和注意力控制改善有关。32 名高特质焦虑参与者被分配到实验组 (EG),接受真实的 rt-fMRI-nf,或对照组 (CG),接受假(结合)反馈。在 rt-fMRI-nf 训练前后评估了 RSFC(使用静息状态 fMRI)、焦虑水平和 Stroop 任务表现。与 CG 相比,rt-fMRI-nf 训练后,EG 表现出焦虑水平降低、DLPFC-ACC 功能连接增加以及后部默认模式网络中的 RSFC 增加。此外,在 EG 中,rt-fMRI-nf 训练期间 DLPFC – ACC 功能连接的变化与焦虑水平降低有关。然而,Stroop 任务表现没有组间差异。我们得出结论,针对 DLPFC – ACC 功能连接的 rt-fMRI-nf 可以改变网络连接和交互,是减少特质焦虑的可行方法。
在对电动驱动器的最佳控制中,人们可以通过在退缩地平线上求解基础控制问题,在离散时间步骤中隐式优化控制输入,或者可以尝试明确地找到一个直接映射测得的测量状态以控制操作的控制策略函数。后一种方法通常称为显式最佳控制,需要使用近似功能来解决连续(即无限)状态和动作空间。一旦找到了(近似)最佳控制策略,通常比在每个控制器周期必须在线优化过程进行在线优化过程的隐式情况要快得多。由于控制器决策时间间隔在电动驱动器的子毫秒范围内,因此明确的最佳控制的快速在线推断是一项令人信服的功能。在这里,潜在的控制策略近似函数涵盖了广泛的函数类别,例如神经网络,高斯过程或拉瓜多项式[1]。可以从数据(例如增强学习[2])或基于可用植物模型(差异预测性控制[3])中学习控制策略。在这两种情况下,近似函数的拓扑都在控制策略的性能以及训练和推理阶段的数值复杂性方面都起着至关重要的规则。虽然近似函数的特定选择通常是基于临时启发式方法,但如何系统地选择给定控制任务的最佳近似函数的问题仍然在很大程度上开放。
大量证据表明,运动意象和动作执行行为是由重叠的神经基质引起的,即使在运动意象期间没有明显的运动。到目前为止,尚不清楚运动意象和执行中的神经激活与自然的全身运动(例如行走)相比如何。神经影像学研究尚未直接比较动态行走运动中的意象和执行。在这里,我们用移动脑电图记录了行走期间的大脑激活,并与行走意象期间的大脑激活进行了比较,以心理计数作为控制条件。我们要求 24 名健康参与者在路上走六步,想象走六步,或者在心里从一数到六。我们发现运动意象期间的 beta 和 alpha 功率调制类似于动作执行模式;在执行心理计数的控制任务时未发现这种对应关系。神经重叠发生在执行和想象步行动作的早期,表明激活了共享动作表征。值得注意的是,在动作执行和动作结束时的想象过程中都发生了与步行相关的明显 beta 反弹,这表明与实际步行一样,运动意象涉及重置或抑制运动过程。然而,我们还发现运动意象引发了一种独特的更分散的 beta 活动模式,尤其是在任务开始时。这些结果表明,运动意象和自然步行的执行涉及共享的运动认知激活,但运动意象需要额外的皮质资源。
运动脑机接口 (BMI) 解码神经信号,帮助瘫痪患者移动和交流。尽管在过去二十年中取得了重大进展,但 BMI 仍面临着临床可行性的关键障碍。侵入式 BMI 可以实现熟练的光标和机械臂控制,但需要神经外科手术,对患者构成重大风险。非侵入式 BMI 没有神经外科手术风险,但性能较低,有时使用起来非常令人沮丧,阻碍了广泛采用。我们通过构建高性能的非侵入式 BMI 朝着打破这种性能风险权衡迈出了一步。17 限制非侵入式 BMI 解码器性能的关键限制是其较差的神经信噪比。为了克服这个问题,我们贡献了 (1) 一种新颖的 EEG 解码方法和 (2) 人工智能 (AI) 副驾驶,可以推断任务目标并帮助完成行动。我们证明,借助这种“AI-BMI”,结合使用卷积神经网络 (CNN) 和类似 ReFIT 的卡尔曼滤波器 (KF) 的新型自适应解码方法,健康用户和瘫痪参与者可以自主且熟练地控制计算机光标和机械臂。使用 AI 副驾驶可将目标获取速度提高 4 倍。在标准的中心向外光标控制任务中,目标获取速度提高了 3 倍,并使用户能够控制机械臂执行顺序拾取和放置任务,将 4 个随机放置的块移动到 4 个随机选择的位置。随着 AI 副驾驶的改进,这种方法可能会产生临床上可行的非侵入式 AI-BMI。26
摘要 患有压力相关衰竭症 (ED) 的患者存在记忆力和执行功能问题。这些问题与前额皮质 (PFC) 的异常活动有关。我们研究了 ED 患者 (n = 20,16 名女性) 在长时间心理活动期间的认知表现和 PFC 功能活动,ED 患者自确诊以来的平均持续时间为 46 ± 23 个月,并与健康个体 (n = 20,12 名女性) 进行了比较。按顺序进行了六个神经心理学测试,重复一次。所有测试均采用了脑成像技术、功能性近红外光谱 (fNIRS)。两组之间在随时间的变化方面没有差异,即第一个和第二个测试块之间的差异。在 Stroop - Simon 测试中,对照组表现出额皮质的功能活动更高。在左腹外侧 PFC 中,我们观察到对照组在不一致试验中的活动比一致试验中增加,而在 ED 患者组中没有发现任何变化。在处理速度任务期间,只有 ED 患者在右背外侧 PFC 中表现出更高的功能活动。ED 患者报告的主观能量水平较低,并且在心理控制任务中的表现也比健康人差。总之,ED 患者与对照组相比表现出改变的功能活动,表明 ED 患者在前额皮质中处理信息的方式不同,但重测设计显示,在 2 1 = 2 小时过程中,功能活动没有变化。
目的:随机临床试验表明,有氧运动可减轻帕金森病的运动症状进展,但其潜在的神经机制尚不清楚。在本文中,我们研究了有氧运动如何影响与疾病相关的皮质纹状体感觉运动网络的功能和结构变化,该网络与帕金森病的运动缺陷的出现有关。此外,我们还探讨了有氧运动对黑质组织完整性以及行为和大脑认知控制指标的影响。方法:Park-in-Shape 试验是一项单中心、双盲随机对照试验,130 名帕金森病患者被随机分配(1:1 比例)接受有氧运动(固定家用训练器)或拉伸(主动控制)干预(持续时间 = 6 个月)。本次试验中未选定的一个子集(运动,n = 25;拉伸,n = 31)在基线和 6 个月的随访中接受了静息态功能和结构磁共振成像(MRI)以及眼球运动认知控制任务(前扫视和反扫视)。结果:有氧运动(而非拉伸)导致前壳核与感觉运动皮质之间的功能连接相对于后壳核增强。在行为上,有氧运动也改善了认知控制。此外,有氧运动增加了右额顶叶网络的功能连接,与体能改善成正比,并且减少了全脑萎缩。解读:MRI、临床和行为结果均趋向于以下结论:有氧运动可稳定皮质纹状体感觉运动网络中的疾病进展并提高认知能力。神经病学年鉴 2022;91:203 – 216