3.定义 2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..3.1 飞机分类和作战任务 2 .........< div> 。。。。。。。....3.2 飞行阶段分类 2 .。。。。。。。。。。。。。。。。。。。。。。。。...... div>........3.3 飞行品质的等级和质量适宜性 2 ...< div> 。。。。。。。。。。。。。。。3.4 参数 2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.4.1 一般术语 2.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.4.2 速度 3 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.4.3 推力和功率 5.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.4.4 控制参数 6.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.........3.4.5 纵向参数 6 .............。。。。。。。。。。。。。。。。。。。。。。。。.3.4.6 横向方向参数 8 ...............................3.4.7 大气扰动参数 16 ............................3.5 大攻角要求中使用的术语 18 ........。。。。。。。。。。。
- 地面软件和人员没有为持续的故障排除做好准备 - DSN 联系时间和团队开发和 V&V 序列的时间有限 - 自动进行脱饱和机动的 BCT 软件的动量约束和限制 - 使用 ACS 遥测和多普勒排列多普勒/动量/热响应以查看动量变化并计算产生的推力 • 飞行测试活动非常全面,包括加热、占空比、压力、阀门驱动等。
• 两根杆连接到一根销钉上。一根杆以 40 N 的力沿东方向拉动销钉,另一根杆以 60 N 的力沿西南 60° 方向推动销钉。 • 确定销钉上的合力和平衡力。 • 在使用力的平行四边形尝试解决这个问题之前,您必须将 60 N 的推力转换为沿相同作用线的拉力。该拉力由图中的虚线表示。
论文的目的是为合并高度和空速控制的非传统控制定律开发设计和仿真框架,其中推力和电梯控制输入均同时且无缝地使用。与独立治疗推力和态度控制的传统方法相比,可以实现绩效和飞行安全性的显着增长。结果应该在主管的教育活动中使用(飞行控制系统的讲座和实验室,SRL),以及与从事通用航空飞行控制解决方案的工业合作伙伴的预见合作。1。为研究中提出的解决方案开发用于线性控制设计和非线性仿真验证的工具[1]。在与主管协商时,请选择感兴趣的案例。使用课程飞行控制系统SRL采用飞行力学模型。2。调整开发的工具,并使用传统解决方案进行定性和定量的比较分析,您在飞行控制系统课程的半阶段项目中开发了这些解决方案,对于步骤1中选择/商定的情况。Alt HLD/SLCT,GS TRK,MACH HLD是一些预期的示例。3。表明[1]中使用的方法和用于小型无人机的PX4单元[2]中使用的方法有显着差异。在与主管协商时实施选定的解决方案,并提供控制设计和评估结果。
该技术背后的理念很简单:通过在固体火箭发动机现有的燃料基础上引入液体单推进剂,可以控制火箭的功率和推力角度,使其更加灵活和可控。Exquadrum 创始人 Kevin Mahaffy 表示,如果将目前的固体火箭发动机技术想象成烟花火箭,点燃引信后就可以逃跑,那么单推进剂系统就像在烟花上加了一个操纵杆,这样你就可以控制烟花的飞行位置和速度。
在射频离子推进器中,推进剂(惰性气体氙气)中的原子通过高频电磁场电离,形成等离子体。在等离子体中,带正电的氙气离子和电子可以单独存在。然后利用电场加速带正电的氙气离子,然后将其喷射以提供推力。为了防止由于带正电的离子流被排出而导致卫星净电荷不平衡,使用中和器释放电子以保持系统平衡。
如今,推力轴承承受着不断增加的速度和负载,同时又受到空间狭小的限制,并将体温保持在 API 要求的范围内。因此,轴承制造商不断寻找满足客户需求的下一款“超级轴承”。本文介绍了三种不同的均衡推力轴承设计及其在试验台上的性能。第一种设计是传统的浸没式轴承,其余两种设计是定向润滑轴承。所有轴承均衬有 ASTM 2 级巴氏合金,并具有相同的高 (65%) 枢轴偏移,以帮助它们在极端测试条件下生存。轴承承受的负载增量在几种不同的轴速下终止于触发警报的温度。测试表明,其中一种定向润滑设计能够比其他两种设计承受更高的轴承负载,同时在中高速度下具有较小的轴承面积(平均轴承直径为 206-345 fps (62.8-105.2 m/sec))。我们声称,这种轴承设计是满足上述客户需求的一步。我们进行了初步的计算流体动力学模拟,以研究设计中的流动模式,希望深入了解其冷却机制。最后,我们证明了根据经典热油携带理论重现单个轴承性能的难度。
摘要 执行尽可能经济和安全的进场仍然是机组人员面临的挑战,需要同时满足多项要求。为了使飞机以尽可能低的油耗和噪音特征从巡航高度下降到接地,需要一种既能以理想速度在空转推力下进场,又能遵循理想垂直剖面的进场,而无需使用减速板、过早放下起落架或以高推力设置飞行不必要的水平段。2019 年 9 月,在苏黎世机场,DLR 的空客 A320 先进技术研究飞机 (ATRA) 使用低噪音增强系统 (LNAS) 飞行员辅助系统进行了总共 90 次进场测试,以实现最经济、最安静的进场。本文旨在从飞行员和管制员的角度介绍空转进场及其通过 LNAS 执行的挑战,根据飞行测试数据展示节省燃料和降低噪音的潜力,并讨论下一步的发展步骤。辅助系统减轻了机组人员的工作量,并为进近过程中的所有这些任务提供支持。执行最佳进近所需的关键信息是飞机实际位置与跑道之间的预期距离。使用辅助系统进行的进近比飞行员进行的进近平均更经济、更安静
核热推进 (NTP) 目前被确定为整个太阳系人类任务的首选推进技术之一。最先进的 NTP 循环基于固体核发动机火箭飞行器应用 (NERVA) 级技术,该技术预计将提供 900 秒的比冲 (I 𝑠𝑝 ),是化学火箭性能 (450 秒) 的两倍。即使有如此令人印象深刻的提升,NTP I 𝑠𝑝 仍然无法为高 Δ V 任务提供足够的初始到最终质量分数。核电推进 (NEP) 可以提供极高的 I 𝑠𝑝 (>10,000 秒),但推力较低,并且推进系统质量功率比受到限制。对电源的需求还增加了太空散热问题,在理想条件下,热能转化为电能的比例最多为 30-40%。提出了一种新型波转子 (WR) 顶置循环,有望提供接近 NERVA 级 NTP 推进的推力,但 I 𝑠𝑝 在 1200-2000 秒范围内。与混合 NEP 模式相结合,占空比 I 𝑠𝑝 可以进一步增加(1800-4000 秒),同时将额外干质量降至最低。双模设计使快速运输级载人火星任务成为可能,并有可能彻底改变我们太阳系的深空探索。
摘要 本文介绍了一项关于旋转磁场 (RMF) 推进器低推力效率的实验研究。该技术成熟度较低,但可能成为使用替代推进剂实现高功率太空推进的候选技术。对 5 kW 级 RMF 推进器进行了直接推力台架测量,结果显示推力效率为 0.41 ± 0.04%,比冲为 292 ± 11 s - RMF 推进器运行的典型值。使用一套远场探测器为 RMF 推进器性能的现象学效率模型提供信息,该模型考虑了发散、功率耦合、质量利用率和等离子体/加速效率。结果发现等离子体效率处于临界低值,为 6.4 ± 1.0%。这表明 RMF 天线耦合到等离子体的大部分能量在转换为推进器光束中的定向动能之前就丢失了。为了确定这些损失的来源,使用三重朗缪尔探针对内部等离子体特性进行了时间分辨测量。发现碰撞激发辐射和壁面损失是两个主要的损失过程。与其他电力推进结构相比,该装置表现出异常高的等离子体密度(> 10 19 m − 3),这可以解释这一趋势。根据效率分析的结果,讨论了探测技术的局限性以及改进 RMF 推进器性能的策略。
