摘要 —与不带耦合电感的传统阻抗源网络相比,磁耦合阻抗源网络可以在较小的直通占空比下获得较高的电压增益,但无源元件和功率器件中的寄生电阻严重影响实际的电压增益,需要进行研究。本文推导并分析了三种不同情况下寄生电阻对磁耦合阻抗源网络电压增益的影响:第一,寄生电阻与输出等效电阻的电阻比不同,第二,不同的直通占空比,第三,不同的绕组比。首先,针对三种典型的磁耦合阻抗源网络——Trans-Z源、Г源和Y源网络,提出了考虑寄生电阻的广义等效电路模型。在此基础上,从数学上推导并讨论了上述三种不同情况下寄生电阻对电压增益的影响。并推导了同时考虑三种电阻比时的最大电压增益.最后,给出了具有代表性的仿真和实验结果来验证所提出的广义等效电路模型、相应的数学推导以及寄生电阻对磁耦合阻抗源网络的影响.
摘要 最近证明了非相对论量子公式可以从扩展的最小作用量原理 Yang (2023)。在本文中,我们将该原理应用于大质量标量场,并推导出标量场的波函数薛定谔方程。该原理通过考虑两个假设扩展了经典场论中的最小作用量原理。首先,普朗克常数定义了场需要表现出可观测的最小作用量。其次,存在恒定的随机场涨落。引入一种新方法来定义信息度量来衡量由于场涨落而产生的额外可观测信息,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够优雅地推导出场涨落的跃迁概率、不确定关系和波函数的薛定谔方程。此外,通过使用相对熵的一般定义来定义场涨落的信息度量,我们得到了依赖于相对熵阶数的波函数广义薛定谔方程。我们的结果表明,扩展的最小作用原理既可用于推导非相对论量子力学,也可用于推导相对论量子标量场理论。我们期望它可以进一步用于推导非标量场的量子理论。
(b)粒子 2 路径中终点和起点之间的电位变化为 ∆ V 2 = +6V。动能变化可从给定的初值和终点推导出来:∆ K 2 = K 2 A − K 2 B = 6 µ J。能量守恒定律要求电位变化为 ∆ U 2 = − ∆ K 2 = − 6 µ J。粒子 2 的未知电荷现在可从关系 ∆ U 2 = q 2 ∆ V 2 推导出来。答案为 q 2 = − 1 µ C。
2.1 弹性:变形力、恢复力、弹性体和塑性体、应力和应变及其类型、胡克定律、应力应变图、杨氏模量、体积模量、刚性模量及其之间的关系(无推导)(简单问题)。(简单问题)H.T. 的应力应变图。钢、铸铁、铝和混凝土、极限应力和断裂应力、安全系数。2.2 表面张力:力——内聚力和粘附力、接触角、毛细管中液体表面的形状、毛细作用及其示例、表面张力之间的关系、毛细上升和毛细半径(无推导)(简单问题)、杂质和温度对表面张力的影响。2.3 粘度:速度梯度、牛顿粘度定律、粘度系数、流线和湍流、临界速度、雷诺数(简单问题)、斯托克斯定律和终端速度(无推导)、浮力(向上推力)、温度和掺杂对液体粘度的影响。
2.1 弹性:变形力、恢复力、弹性体和塑性体、应力和应变及其类型、胡克定律、应力应变图、杨氏模量、体积模量、刚性模量及其之间的关系(无推导)(简单问题)。 (简单问题)高温钢、铸铁、铝和混凝土的应力应变图、极限应力和断裂应力、安全系数。 2.2 表面张力:力——内聚力和粘附力、接触角、毛细管中液面的形状、毛细作用举例、表面张力之间的关系、毛细管上升和毛细管半径(无推导)(简单问题)、杂质和温度对表面张力的影响。 2.3 粘度:速度梯度、牛顿粘度定律、粘度系数、流线和湍流、临界速度、雷诺数(简单问题)、斯托克斯定律和终端速度(无推导)、浮力(向上推力)、温度和掺杂对液体粘度的影响。
1)知道pk 0,f和t,不可能nd任何私有钥匙sk i,i = 1,。。。,n; 2)如果秘密键SK 1,。。。,sk i -1,sk i +1,。。。,sk n是已知的。但是,通常,由于在随机和独立的密钥选择的假设下,通常会分析用于认证交易的机制的安全性,因此这种要求不足以进行密钥推导。解决方案是分析这种机制和密钥推导过程的关节安全性。可以用众所周知的攻击:相关的关键攻击[2]来描述键推导的键推导。该问题并不限制用于身份验证交易的机制,但是,签名方案最常用于此目的。在本文中,我们描述了修改的签名方案的接口(带有可重新数字键的所谓签名),并将安全模型系统化进行分析。所有考虑的模型
1个预测是基于特定模型驱动程序途径的未来轨迹的数值估计2场景是描述给定系统合理期货的叙述。它们可以与相关变量的定量途径相关联,这些变量可以用作模型驱动器,以推导基于方案的预测。2场景是描述给定系统的合理未来的叙述。它们可以与相关变量的定量途径相关联,这些变量可以用作模型驱动器,以推导基于方案的预测。
摘要。1905 年,爱因斯坦通过研究电磁辐射物体在不同参考系中的能量平衡,并假设狭义相对论为前提条件,首次推导了质能等价性。在本文中,我们证明了广义的质能关系可以仅从非常基本的假设中推导出来,这些假设与爱因斯坦在第一次推导中所做的假设相同,但完全忽略了狭义相对论。当将广义的质能关系应用于以电磁波形式发射能量的物体的情况时,它就变成了质能等价性。我们的主要结果是,如果爱因斯坦方法背后的核心逻辑是合理的,那么质能等价性的本质就可以在没有狭义相对论的情况下推导出来。我们相信,我们的启发式方法虽然不能给出质能等价性的精确数学公式,但可能对研究生阶段关于这个问题的一般讨论是一个有益的补充。我们的发现表明,质量和能量之间的联系处于更深的层次,并且早于任何成熟的物理理论。
人为时代的生物多样性损失危机需要研究非模型生物的新工具。大象既是一种濒危物种,又是研究复杂表型(例如大小,社会行为和寿命)等复杂表型的出色模型,但它们仍然严重研究。在这里,我们报告了通过化学媒体诱导和菌落选择的两个步骤,然后对大象转录因子Oct4,Sox2,Sox2,sox2,klf4,myc±nanog and Lin28a和MADENATION进行过度表达,然后通过化学媒体诱导和菌落选择过度表达了大象诱导的多能干细胞(EMIPSC)的第一个推导。自Shinya Yamanaka进行重新编程以来,已经报道了来自许多物种在内的许多物种的IPSC,包括功能灭绝的北部白鼻菌,但EMIPSC仍然难以捉摸。对于多种物种,与小鼠和人类(如小鼠和人类)相比,采用了重编程方案,但我们的EMIPSC方案几乎没有变化,但我们的EMIPSC方案需要更长的时间表和抑制TP53扩张基因,这些基因被认为可以在大象中赋予独特的癌症。IPSC解锁了探索细胞命运,细胞和组织发育,细胞疗法,药物筛查,疾病建模,癌症发展,配子发生及其他方面的巨大潜力,以进一步了解我们对这一标志性的巨型巨型。这项研究为遗传拯救和保护的晚期非模型生物细胞模型打开了新的边界。